Factor
\left(2y+3\right)\left(7y+8\right)
Evaluate
\left(2y+3\right)\left(7y+8\right)
Graph
Share
Copied to clipboard
a+b=37 ab=14\times 24=336
Factor the expression by grouping. First, the expression needs to be rewritten as 14y^{2}+ay+by+24. To find a and b, set up a system to be solved.
1,336 2,168 3,112 4,84 6,56 7,48 8,42 12,28 14,24 16,21
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 336.
1+336=337 2+168=170 3+112=115 4+84=88 6+56=62 7+48=55 8+42=50 12+28=40 14+24=38 16+21=37
Calculate the sum for each pair.
a=16 b=21
The solution is the pair that gives sum 37.
\left(14y^{2}+16y\right)+\left(21y+24\right)
Rewrite 14y^{2}+37y+24 as \left(14y^{2}+16y\right)+\left(21y+24\right).
2y\left(7y+8\right)+3\left(7y+8\right)
Factor out 2y in the first and 3 in the second group.
\left(7y+8\right)\left(2y+3\right)
Factor out common term 7y+8 by using distributive property.
14y^{2}+37y+24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-37±\sqrt{37^{2}-4\times 14\times 24}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-37±\sqrt{1369-4\times 14\times 24}}{2\times 14}
Square 37.
y=\frac{-37±\sqrt{1369-56\times 24}}{2\times 14}
Multiply -4 times 14.
y=\frac{-37±\sqrt{1369-1344}}{2\times 14}
Multiply -56 times 24.
y=\frac{-37±\sqrt{25}}{2\times 14}
Add 1369 to -1344.
y=\frac{-37±5}{2\times 14}
Take the square root of 25.
y=\frac{-37±5}{28}
Multiply 2 times 14.
y=-\frac{32}{28}
Now solve the equation y=\frac{-37±5}{28} when ± is plus. Add -37 to 5.
y=-\frac{8}{7}
Reduce the fraction \frac{-32}{28} to lowest terms by extracting and canceling out 4.
y=-\frac{42}{28}
Now solve the equation y=\frac{-37±5}{28} when ± is minus. Subtract 5 from -37.
y=-\frac{3}{2}
Reduce the fraction \frac{-42}{28} to lowest terms by extracting and canceling out 14.
14y^{2}+37y+24=14\left(y-\left(-\frac{8}{7}\right)\right)\left(y-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{8}{7} for x_{1} and -\frac{3}{2} for x_{2}.
14y^{2}+37y+24=14\left(y+\frac{8}{7}\right)\left(y+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14y^{2}+37y+24=14\times \frac{7y+8}{7}\left(y+\frac{3}{2}\right)
Add \frac{8}{7} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14y^{2}+37y+24=14\times \frac{7y+8}{7}\times \frac{2y+3}{2}
Add \frac{3}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14y^{2}+37y+24=14\times \frac{\left(7y+8\right)\left(2y+3\right)}{7\times 2}
Multiply \frac{7y+8}{7} times \frac{2y+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14y^{2}+37y+24=14\times \frac{\left(7y+8\right)\left(2y+3\right)}{14}
Multiply 7 times 2.
14y^{2}+37y+24=\left(7y+8\right)\left(2y+3\right)
Cancel out 14, the greatest common factor in 14 and 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}