Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=14\left(-3\right)=-42
Factor the expression by grouping. First, the expression needs to be rewritten as 14x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,42 -2,21 -3,14 -6,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Calculate the sum for each pair.
a=-6 b=7
The solution is the pair that gives sum 1.
\left(14x^{2}-6x\right)+\left(7x-3\right)
Rewrite 14x^{2}+x-3 as \left(14x^{2}-6x\right)+\left(7x-3\right).
2x\left(7x-3\right)+7x-3
Factor out 2x in 14x^{2}-6x.
\left(7x-3\right)\left(2x+1\right)
Factor out common term 7x-3 by using distributive property.
14x^{2}+x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 14\left(-3\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 14\left(-3\right)}}{2\times 14}
Square 1.
x=\frac{-1±\sqrt{1-56\left(-3\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-1±\sqrt{1+168}}{2\times 14}
Multiply -56 times -3.
x=\frac{-1±\sqrt{169}}{2\times 14}
Add 1 to 168.
x=\frac{-1±13}{2\times 14}
Take the square root of 169.
x=\frac{-1±13}{28}
Multiply 2 times 14.
x=\frac{12}{28}
Now solve the equation x=\frac{-1±13}{28} when ± is plus. Add -1 to 13.
x=\frac{3}{7}
Reduce the fraction \frac{12}{28} to lowest terms by extracting and canceling out 4.
x=-\frac{14}{28}
Now solve the equation x=\frac{-1±13}{28} when ± is minus. Subtract 13 from -1.
x=-\frac{1}{2}
Reduce the fraction \frac{-14}{28} to lowest terms by extracting and canceling out 14.
14x^{2}+x-3=14\left(x-\frac{3}{7}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{7} for x_{1} and -\frac{1}{2} for x_{2}.
14x^{2}+x-3=14\left(x-\frac{3}{7}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14x^{2}+x-3=14\times \frac{7x-3}{7}\left(x+\frac{1}{2}\right)
Subtract \frac{3}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+x-3=14\times \frac{7x-3}{7}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+x-3=14\times \frac{\left(7x-3\right)\left(2x+1\right)}{7\times 2}
Multiply \frac{7x-3}{7} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14x^{2}+x-3=14\times \frac{\left(7x-3\right)\left(2x+1\right)}{14}
Multiply 7 times 2.
14x^{2}+x-3=\left(7x-3\right)\left(2x+1\right)
Cancel out 14, the greatest common factor in 14 and 14.