Factor
\left(7x-13\right)\left(2x+5\right)
Evaluate
\left(7x-13\right)\left(2x+5\right)
Graph
Share
Copied to clipboard
a+b=9 ab=14\left(-65\right)=-910
Factor the expression by grouping. First, the expression needs to be rewritten as 14x^{2}+ax+bx-65. To find a and b, set up a system to be solved.
-1,910 -2,455 -5,182 -7,130 -10,91 -13,70 -14,65 -26,35
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -910.
-1+910=909 -2+455=453 -5+182=177 -7+130=123 -10+91=81 -13+70=57 -14+65=51 -26+35=9
Calculate the sum for each pair.
a=-26 b=35
The solution is the pair that gives sum 9.
\left(14x^{2}-26x\right)+\left(35x-65\right)
Rewrite 14x^{2}+9x-65 as \left(14x^{2}-26x\right)+\left(35x-65\right).
2x\left(7x-13\right)+5\left(7x-13\right)
Factor out 2x in the first and 5 in the second group.
\left(7x-13\right)\left(2x+5\right)
Factor out common term 7x-13 by using distributive property.
14x^{2}+9x-65=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 14\left(-65\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\times 14\left(-65\right)}}{2\times 14}
Square 9.
x=\frac{-9±\sqrt{81-56\left(-65\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-9±\sqrt{81+3640}}{2\times 14}
Multiply -56 times -65.
x=\frac{-9±\sqrt{3721}}{2\times 14}
Add 81 to 3640.
x=\frac{-9±61}{2\times 14}
Take the square root of 3721.
x=\frac{-9±61}{28}
Multiply 2 times 14.
x=\frac{52}{28}
Now solve the equation x=\frac{-9±61}{28} when ± is plus. Add -9 to 61.
x=\frac{13}{7}
Reduce the fraction \frac{52}{28} to lowest terms by extracting and canceling out 4.
x=-\frac{70}{28}
Now solve the equation x=\frac{-9±61}{28} when ± is minus. Subtract 61 from -9.
x=-\frac{5}{2}
Reduce the fraction \frac{-70}{28} to lowest terms by extracting and canceling out 14.
14x^{2}+9x-65=14\left(x-\frac{13}{7}\right)\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{13}{7} for x_{1} and -\frac{5}{2} for x_{2}.
14x^{2}+9x-65=14\left(x-\frac{13}{7}\right)\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14x^{2}+9x-65=14\times \frac{7x-13}{7}\left(x+\frac{5}{2}\right)
Subtract \frac{13}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+9x-65=14\times \frac{7x-13}{7}\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+9x-65=14\times \frac{\left(7x-13\right)\left(2x+5\right)}{7\times 2}
Multiply \frac{7x-13}{7} times \frac{2x+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14x^{2}+9x-65=14\times \frac{\left(7x-13\right)\left(2x+5\right)}{14}
Multiply 7 times 2.
14x^{2}+9x-65=\left(7x-13\right)\left(2x+5\right)
Cancel out 14, the greatest common factor in 14 and 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}