Evaluate
14x^{2}+4x-\frac{66}{7}+\frac{36}{7x}
Factor
\frac{2\left(49x^{3}+14x^{2}-33x+18\right)}{7x}
Graph
Share
Copied to clipboard
14x^{2}+4x-\frac{66}{7}+\frac{36}{7x}
Subtract \frac{3}{7} from -9 to get -\frac{66}{7}.
14x^{2}+4x-\frac{66x}{7x}+\frac{36}{7x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 7x is 7x. Multiply \frac{66}{7} times \frac{x}{x}.
14x^{2}+4x+\frac{-66x+36}{7x}
Since -\frac{66x}{7x} and \frac{36}{7x} have the same denominator, add them by adding their numerators.
\frac{\left(14x^{2}+4x\right)\times 7x}{7x}+\frac{-66x+36}{7x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14x^{2}+4x times \frac{7x}{7x}.
\frac{\left(14x^{2}+4x\right)\times 7x-66x+36}{7x}
Since \frac{\left(14x^{2}+4x\right)\times 7x}{7x} and \frac{-66x+36}{7x} have the same denominator, add them by adding their numerators.
\frac{98x^{3}+28x^{2}-66x+36}{7x}
Do the multiplications in \left(14x^{2}+4x\right)\times 7x-66x+36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}