Factor
\left(7x-2\right)\left(2x+1\right)
Evaluate
\left(7x-2\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
a+b=3 ab=14\left(-2\right)=-28
Factor the expression by grouping. First, the expression needs to be rewritten as 14x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(14x^{2}-4x\right)+\left(7x-2\right)
Rewrite 14x^{2}+3x-2 as \left(14x^{2}-4x\right)+\left(7x-2\right).
2x\left(7x-2\right)+7x-2
Factor out 2x in 14x^{2}-4x.
\left(7x-2\right)\left(2x+1\right)
Factor out common term 7x-2 by using distributive property.
14x^{2}+3x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 14\left(-2\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 14\left(-2\right)}}{2\times 14}
Square 3.
x=\frac{-3±\sqrt{9-56\left(-2\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-3±\sqrt{9+112}}{2\times 14}
Multiply -56 times -2.
x=\frac{-3±\sqrt{121}}{2\times 14}
Add 9 to 112.
x=\frac{-3±11}{2\times 14}
Take the square root of 121.
x=\frac{-3±11}{28}
Multiply 2 times 14.
x=\frac{8}{28}
Now solve the equation x=\frac{-3±11}{28} when ± is plus. Add -3 to 11.
x=\frac{2}{7}
Reduce the fraction \frac{8}{28} to lowest terms by extracting and canceling out 4.
x=-\frac{14}{28}
Now solve the equation x=\frac{-3±11}{28} when ± is minus. Subtract 11 from -3.
x=-\frac{1}{2}
Reduce the fraction \frac{-14}{28} to lowest terms by extracting and canceling out 14.
14x^{2}+3x-2=14\left(x-\frac{2}{7}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{7} for x_{1} and -\frac{1}{2} for x_{2}.
14x^{2}+3x-2=14\left(x-\frac{2}{7}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14x^{2}+3x-2=14\times \frac{7x-2}{7}\left(x+\frac{1}{2}\right)
Subtract \frac{2}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+3x-2=14\times \frac{7x-2}{7}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+3x-2=14\times \frac{\left(7x-2\right)\left(2x+1\right)}{7\times 2}
Multiply \frac{7x-2}{7} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14x^{2}+3x-2=14\times \frac{\left(7x-2\right)\left(2x+1\right)}{14}
Multiply 7 times 2.
14x^{2}+3x-2=\left(7x-2\right)\left(2x+1\right)
Cancel out 14, the greatest common factor in 14 and 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}