Verify
false
Share
Copied to clipboard
40\left(14\times \frac{1\times 8+3}{8}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Multiply both sides of the equation by 40, the least common multiple of 8,4,40.
40\left(14\times \frac{8+3}{8}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Multiply 1 and 8 to get 8.
40\left(14\times \frac{11}{8}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Add 8 and 3 to get 11.
40\left(\frac{14\times 11}{8}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Express 14\times \frac{11}{8} as a single fraction.
40\left(\frac{154}{8}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Multiply 14 and 11 to get 154.
40\left(\frac{77}{4}+0.314\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Reduce the fraction \frac{154}{8} to lowest terms by extracting and canceling out 2.
40\left(\frac{77}{4}+\frac{157}{500}\times \frac{25}{4}\right)-1256\times 0.2=14\times 40+3
Convert decimal number 0.314 to fraction \frac{314}{1000}. Reduce the fraction \frac{314}{1000} to lowest terms by extracting and canceling out 2.
40\left(\frac{77}{4}+\frac{157\times 25}{500\times 4}\right)-1256\times 0.2=14\times 40+3
Multiply \frac{157}{500} times \frac{25}{4} by multiplying numerator times numerator and denominator times denominator.
40\left(\frac{77}{4}+\frac{3925}{2000}\right)-1256\times 0.2=14\times 40+3
Do the multiplications in the fraction \frac{157\times 25}{500\times 4}.
40\left(\frac{77}{4}+\frac{157}{80}\right)-1256\times 0.2=14\times 40+3
Reduce the fraction \frac{3925}{2000} to lowest terms by extracting and canceling out 25.
40\left(\frac{1540}{80}+\frac{157}{80}\right)-1256\times 0.2=14\times 40+3
Least common multiple of 4 and 80 is 80. Convert \frac{77}{4} and \frac{157}{80} to fractions with denominator 80.
40\times \frac{1540+157}{80}-1256\times 0.2=14\times 40+3
Since \frac{1540}{80} and \frac{157}{80} have the same denominator, add them by adding their numerators.
40\times \frac{1697}{80}-1256\times 0.2=14\times 40+3
Add 1540 and 157 to get 1697.
\frac{40\times 1697}{80}-1256\times 0.2=14\times 40+3
Express 40\times \frac{1697}{80} as a single fraction.
\frac{67880}{80}-1256\times 0.2=14\times 40+3
Multiply 40 and 1697 to get 67880.
\frac{1697}{2}-1256\times 0.2=14\times 40+3
Reduce the fraction \frac{67880}{80} to lowest terms by extracting and canceling out 40.
\frac{1697}{2}-251.2=14\times 40+3
Multiply 1256 and 0.2 to get 251.2.
\frac{1697}{2}-\frac{1256}{5}=14\times 40+3
Convert decimal number 251.2 to fraction \frac{2512}{10}. Reduce the fraction \frac{2512}{10} to lowest terms by extracting and canceling out 2.
\frac{8485}{10}-\frac{2512}{10}=14\times 40+3
Least common multiple of 2 and 5 is 10. Convert \frac{1697}{2} and \frac{1256}{5} to fractions with denominator 10.
\frac{8485-2512}{10}=14\times 40+3
Since \frac{8485}{10} and \frac{2512}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{5973}{10}=14\times 40+3
Subtract 2512 from 8485 to get 5973.
\frac{5973}{10}=560+3
Multiply 14 and 40 to get 560.
\frac{5973}{10}=563
Add 560 and 3 to get 563.
\frac{5973}{10}=\frac{5630}{10}
Convert 563 to fraction \frac{5630}{10}.
\text{false}
Compare \frac{5973}{10} and \frac{5630}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}