Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{14\left(x^{3}+3x^{2}\right)}{x^{2}-1}+3x+1
Express 14\times \frac{x^{3}+3x^{2}}{x^{2}-1} as a single fraction.
\frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)}+3x+1
Factor x^{2}-1.
\frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+1 times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{14\left(x^{3}+3x^{2}\right)+\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Since \frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)} and \frac{\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{14x^{3}+42x^{2}+3x^{3}-3x+x^{2}-1}{\left(x-1\right)\left(x+1\right)}
Do the multiplications in 14\left(x^{3}+3x^{2}\right)+\left(3x+1\right)\left(x-1\right)\left(x+1\right).
\frac{17x^{3}+43x^{2}-3x-1}{\left(x-1\right)\left(x+1\right)}
Combine like terms in 14x^{3}+42x^{2}+3x^{3}-3x+x^{2}-1.
\frac{17x^{3}+43x^{2}-3x-1}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).
\frac{14\left(x^{3}+3x^{2}\right)}{x^{2}-1}+3x+1
Express 14\times \frac{x^{3}+3x^{2}}{x^{2}-1} as a single fraction.
\frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)}+3x+1
Factor x^{2}-1.
\frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+1 times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{14\left(x^{3}+3x^{2}\right)+\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Since \frac{14\left(x^{3}+3x^{2}\right)}{\left(x-1\right)\left(x+1\right)} and \frac{\left(3x+1\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{14x^{3}+42x^{2}+3x^{3}-3x+x^{2}-1}{\left(x-1\right)\left(x+1\right)}
Do the multiplications in 14\left(x^{3}+3x^{2}\right)+\left(3x+1\right)\left(x-1\right)\left(x+1\right).
\frac{17x^{3}+43x^{2}-3x-1}{\left(x-1\right)\left(x+1\right)}
Combine like terms in 14x^{3}+42x^{2}+3x^{3}-3x+x^{2}-1.
\frac{17x^{3}+43x^{2}-3x-1}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).