Solve for A
A=-\frac{4a}{5}+13.12
Solve for a
a=-\frac{5A}{4}+16.4
Share
Copied to clipboard
A+0.88+0.8a=14
Swap sides so that all variable terms are on the left hand side.
A+0.8a=14-0.88
Subtract 0.88 from both sides.
A+0.8a=13.12
Subtract 0.88 from 14 to get 13.12.
A=13.12-0.8a
Subtract 0.8a from both sides.
A+0.88+0.8a=14
Swap sides so that all variable terms are on the left hand side.
0.88+0.8a=14-A
Subtract A from both sides.
0.8a=14-A-0.88
Subtract 0.88 from both sides.
0.8a=13.12-A
Subtract 0.88 from 14 to get 13.12.
\frac{0.8a}{0.8}=\frac{13.12-A}{0.8}
Divide both sides of the equation by 0.8, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{13.12-A}{0.8}
Dividing by 0.8 undoes the multiplication by 0.8.
a=-\frac{5A}{4}+\frac{82}{5}
Divide 13.12-A by 0.8 by multiplying 13.12-A by the reciprocal of 0.8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}