Evaluate
\frac{464850}{3199}\approx 145.311034698
Factor
\frac{2 \cdot 3 ^ {2} \cdot 5 ^ {2} \cdot 1033}{7 \cdot 457} = 145\frac{995}{3199} = 145.31103469834324
Share
Copied to clipboard
\begin{array}{l}\phantom{9597)}\phantom{1}\\9597\overline{)1394550}\\\end{array}
Use the 1^{st} digit 1 from dividend 1394550
\begin{array}{l}\phantom{9597)}0\phantom{2}\\9597\overline{)1394550}\\\end{array}
Since 1 is less than 9597, use the next digit 3 from dividend 1394550 and add 0 to the quotient
\begin{array}{l}\phantom{9597)}0\phantom{3}\\9597\overline{)1394550}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1394550
\begin{array}{l}\phantom{9597)}00\phantom{4}\\9597\overline{)1394550}\\\end{array}
Since 13 is less than 9597, use the next digit 9 from dividend 1394550 and add 0 to the quotient
\begin{array}{l}\phantom{9597)}00\phantom{5}\\9597\overline{)1394550}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1394550
\begin{array}{l}\phantom{9597)}000\phantom{6}\\9597\overline{)1394550}\\\end{array}
Since 139 is less than 9597, use the next digit 4 from dividend 1394550 and add 0 to the quotient
\begin{array}{l}\phantom{9597)}000\phantom{7}\\9597\overline{)1394550}\\\end{array}
Use the 4^{th} digit 4 from dividend 1394550
\begin{array}{l}\phantom{9597)}0000\phantom{8}\\9597\overline{)1394550}\\\end{array}
Since 1394 is less than 9597, use the next digit 5 from dividend 1394550 and add 0 to the quotient
\begin{array}{l}\phantom{9597)}0000\phantom{9}\\9597\overline{)1394550}\\\end{array}
Use the 5^{th} digit 5 from dividend 1394550
\begin{array}{l}\phantom{9597)}00001\phantom{10}\\9597\overline{)1394550}\\\phantom{9597)}\underline{\phantom{9}9597\phantom{99}}\\\phantom{9597)9}4348\\\end{array}
Find closest multiple of 9597 to 13945. We see that 1 \times 9597 = 9597 is the nearest. Now subtract 9597 from 13945 to get reminder 4348. Add 1 to quotient.
\begin{array}{l}\phantom{9597)}00001\phantom{11}\\9597\overline{)1394550}\\\phantom{9597)}\underline{\phantom{9}9597\phantom{99}}\\\phantom{9597)9}43485\\\end{array}
Use the 6^{th} digit 5 from dividend 1394550
\begin{array}{l}\phantom{9597)}000014\phantom{12}\\9597\overline{)1394550}\\\phantom{9597)}\underline{\phantom{9}9597\phantom{99}}\\\phantom{9597)9}43485\\\phantom{9597)}\underline{\phantom{9}38388\phantom{9}}\\\phantom{9597)99}5097\\\end{array}
Find closest multiple of 9597 to 43485. We see that 4 \times 9597 = 38388 is the nearest. Now subtract 38388 from 43485 to get reminder 5097. Add 4 to quotient.
\begin{array}{l}\phantom{9597)}000014\phantom{13}\\9597\overline{)1394550}\\\phantom{9597)}\underline{\phantom{9}9597\phantom{99}}\\\phantom{9597)9}43485\\\phantom{9597)}\underline{\phantom{9}38388\phantom{9}}\\\phantom{9597)99}50970\\\end{array}
Use the 7^{th} digit 0 from dividend 1394550
\begin{array}{l}\phantom{9597)}0000145\phantom{14}\\9597\overline{)1394550}\\\phantom{9597)}\underline{\phantom{9}9597\phantom{99}}\\\phantom{9597)9}43485\\\phantom{9597)}\underline{\phantom{9}38388\phantom{9}}\\\phantom{9597)99}50970\\\phantom{9597)}\underline{\phantom{99}47985\phantom{}}\\\phantom{9597)999}2985\\\end{array}
Find closest multiple of 9597 to 50970. We see that 5 \times 9597 = 47985 is the nearest. Now subtract 47985 from 50970 to get reminder 2985. Add 5 to quotient.
\text{Quotient: }145 \text{Reminder: }2985
Since 2985 is less than 9597, stop the division. The reminder is 2985. The topmost line 0000145 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 145.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}