Evaluate
\frac{696370}{270613}\approx 2.573305791
Factor
\frac{2 \cdot 5 \cdot 83 \cdot 839}{7 \cdot 67 \cdot 577} = 2\frac{155144}{270613} = 2.573305790926526
Share
Copied to clipboard
\begin{array}{l}\phantom{541226)}\phantom{1}\\541226\overline{)1392740}\\\end{array}
Use the 1^{st} digit 1 from dividend 1392740
\begin{array}{l}\phantom{541226)}0\phantom{2}\\541226\overline{)1392740}\\\end{array}
Since 1 is less than 541226, use the next digit 3 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}0\phantom{3}\\541226\overline{)1392740}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1392740
\begin{array}{l}\phantom{541226)}00\phantom{4}\\541226\overline{)1392740}\\\end{array}
Since 13 is less than 541226, use the next digit 9 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}00\phantom{5}\\541226\overline{)1392740}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1392740
\begin{array}{l}\phantom{541226)}000\phantom{6}\\541226\overline{)1392740}\\\end{array}
Since 139 is less than 541226, use the next digit 2 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}000\phantom{7}\\541226\overline{)1392740}\\\end{array}
Use the 4^{th} digit 2 from dividend 1392740
\begin{array}{l}\phantom{541226)}0000\phantom{8}\\541226\overline{)1392740}\\\end{array}
Since 1392 is less than 541226, use the next digit 7 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}0000\phantom{9}\\541226\overline{)1392740}\\\end{array}
Use the 5^{th} digit 7 from dividend 1392740
\begin{array}{l}\phantom{541226)}00000\phantom{10}\\541226\overline{)1392740}\\\end{array}
Since 13927 is less than 541226, use the next digit 4 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}00000\phantom{11}\\541226\overline{)1392740}\\\end{array}
Use the 6^{th} digit 4 from dividend 1392740
\begin{array}{l}\phantom{541226)}000000\phantom{12}\\541226\overline{)1392740}\\\end{array}
Since 139274 is less than 541226, use the next digit 0 from dividend 1392740 and add 0 to the quotient
\begin{array}{l}\phantom{541226)}000000\phantom{13}\\541226\overline{)1392740}\\\end{array}
Use the 7^{th} digit 0 from dividend 1392740
\begin{array}{l}\phantom{541226)}0000002\phantom{14}\\541226\overline{)1392740}\\\phantom{541226)}\underline{\phantom{}1082452\phantom{}}\\\phantom{541226)9}310288\\\end{array}
Find closest multiple of 541226 to 1392740. We see that 2 \times 541226 = 1082452 is the nearest. Now subtract 1082452 from 1392740 to get reminder 310288. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }310288
Since 310288 is less than 541226, stop the division. The reminder is 310288. The topmost line 0000002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}