Solve for x
x=-\log_{0.945}\left(\frac{46400000000}{8081268993}\right)\approx 30.895168573
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(0.945)}-\log_{0.945}\left(\frac{46400000000}{8081268993}\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
8700\times 0.945^{x-4}-551=1349
Swap sides so that all variable terms are on the left hand side.
8700\times 0.945^{x-4}=1900
Add 551 to both sides of the equation.
0.945^{x-4}=\frac{19}{87}
Divide both sides by 8700.
\log(0.945^{x-4})=\log(\frac{19}{87})
Take the logarithm of both sides of the equation.
\left(x-4\right)\log(0.945)=\log(\frac{19}{87})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x-4=\frac{\log(\frac{19}{87})}{\log(0.945)}
Divide both sides by \log(0.945).
x-4=\log_{0.945}\left(\frac{19}{87}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{19}{87})}{\ln(\frac{189}{200})}-\left(-4\right)
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}