Evaluate
7
Factor
7
Share
Copied to clipboard
\begin{array}{l}\phantom{191)}\phantom{1}\\191\overline{)1337}\\\end{array}
Use the 1^{st} digit 1 from dividend 1337
\begin{array}{l}\phantom{191)}0\phantom{2}\\191\overline{)1337}\\\end{array}
Since 1 is less than 191, use the next digit 3 from dividend 1337 and add 0 to the quotient
\begin{array}{l}\phantom{191)}0\phantom{3}\\191\overline{)1337}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1337
\begin{array}{l}\phantom{191)}00\phantom{4}\\191\overline{)1337}\\\end{array}
Since 13 is less than 191, use the next digit 3 from dividend 1337 and add 0 to the quotient
\begin{array}{l}\phantom{191)}00\phantom{5}\\191\overline{)1337}\\\end{array}
Use the 3^{rd} digit 3 from dividend 1337
\begin{array}{l}\phantom{191)}000\phantom{6}\\191\overline{)1337}\\\end{array}
Since 133 is less than 191, use the next digit 7 from dividend 1337 and add 0 to the quotient
\begin{array}{l}\phantom{191)}000\phantom{7}\\191\overline{)1337}\\\end{array}
Use the 4^{th} digit 7 from dividend 1337
\begin{array}{l}\phantom{191)}0007\phantom{8}\\191\overline{)1337}\\\phantom{191)}\underline{\phantom{}1337\phantom{}}\\\phantom{191)9999}0\\\end{array}
Find closest multiple of 191 to 1337. We see that 7 \times 191 = 1337 is the nearest. Now subtract 1337 from 1337 to get reminder 0. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }0
Since 0 is less than 191, stop the division. The reminder is 0. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}