Evaluate
\frac{1327}{616}\approx 2.154220779
Factor
\frac{1327}{2 ^ {3} \cdot 7 \cdot 11} = 2\frac{95}{616} = 2.154220779220779
Share
Copied to clipboard
\begin{array}{l}\phantom{616)}\phantom{1}\\616\overline{)1327}\\\end{array}
Use the 1^{st} digit 1 from dividend 1327
\begin{array}{l}\phantom{616)}0\phantom{2}\\616\overline{)1327}\\\end{array}
Since 1 is less than 616, use the next digit 3 from dividend 1327 and add 0 to the quotient
\begin{array}{l}\phantom{616)}0\phantom{3}\\616\overline{)1327}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1327
\begin{array}{l}\phantom{616)}00\phantom{4}\\616\overline{)1327}\\\end{array}
Since 13 is less than 616, use the next digit 2 from dividend 1327 and add 0 to the quotient
\begin{array}{l}\phantom{616)}00\phantom{5}\\616\overline{)1327}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1327
\begin{array}{l}\phantom{616)}000\phantom{6}\\616\overline{)1327}\\\end{array}
Since 132 is less than 616, use the next digit 7 from dividend 1327 and add 0 to the quotient
\begin{array}{l}\phantom{616)}000\phantom{7}\\616\overline{)1327}\\\end{array}
Use the 4^{th} digit 7 from dividend 1327
\begin{array}{l}\phantom{616)}0002\phantom{8}\\616\overline{)1327}\\\phantom{616)}\underline{\phantom{}1232\phantom{}}\\\phantom{616)99}95\\\end{array}
Find closest multiple of 616 to 1327. We see that 2 \times 616 = 1232 is the nearest. Now subtract 1232 from 1327 to get reminder 95. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }95
Since 95 is less than 616, stop the division. The reminder is 95. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}