Evaluate
\frac{13}{4}=3.25
Factor
\frac{13}{2 ^ {2}} = 3\frac{1}{4} = 3.25
Share
Copied to clipboard
\begin{array}{l}\phantom{408)}\phantom{1}\\408\overline{)1326}\\\end{array}
Use the 1^{st} digit 1 from dividend 1326
\begin{array}{l}\phantom{408)}0\phantom{2}\\408\overline{)1326}\\\end{array}
Since 1 is less than 408, use the next digit 3 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{408)}0\phantom{3}\\408\overline{)1326}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1326
\begin{array}{l}\phantom{408)}00\phantom{4}\\408\overline{)1326}\\\end{array}
Since 13 is less than 408, use the next digit 2 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{408)}00\phantom{5}\\408\overline{)1326}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1326
\begin{array}{l}\phantom{408)}000\phantom{6}\\408\overline{)1326}\\\end{array}
Since 132 is less than 408, use the next digit 6 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{408)}000\phantom{7}\\408\overline{)1326}\\\end{array}
Use the 4^{th} digit 6 from dividend 1326
\begin{array}{l}\phantom{408)}0003\phantom{8}\\408\overline{)1326}\\\phantom{408)}\underline{\phantom{}1224\phantom{}}\\\phantom{408)9}102\\\end{array}
Find closest multiple of 408 to 1326. We see that 3 \times 408 = 1224 is the nearest. Now subtract 1224 from 1326 to get reminder 102. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }102
Since 102 is less than 408, stop the division. The reminder is 102. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}