Evaluate
\frac{1325578}{49201}\approx 26.942094673
Factor
\frac{2 \cdot 662789}{49201} = 26\frac{46352}{49201} = 26.942094672872503
Share
Copied to clipboard
\begin{array}{l}\phantom{49201)}\phantom{1}\\49201\overline{)1325578}\\\end{array}
Use the 1^{st} digit 1 from dividend 1325578
\begin{array}{l}\phantom{49201)}0\phantom{2}\\49201\overline{)1325578}\\\end{array}
Since 1 is less than 49201, use the next digit 3 from dividend 1325578 and add 0 to the quotient
\begin{array}{l}\phantom{49201)}0\phantom{3}\\49201\overline{)1325578}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1325578
\begin{array}{l}\phantom{49201)}00\phantom{4}\\49201\overline{)1325578}\\\end{array}
Since 13 is less than 49201, use the next digit 2 from dividend 1325578 and add 0 to the quotient
\begin{array}{l}\phantom{49201)}00\phantom{5}\\49201\overline{)1325578}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1325578
\begin{array}{l}\phantom{49201)}000\phantom{6}\\49201\overline{)1325578}\\\end{array}
Since 132 is less than 49201, use the next digit 5 from dividend 1325578 and add 0 to the quotient
\begin{array}{l}\phantom{49201)}000\phantom{7}\\49201\overline{)1325578}\\\end{array}
Use the 4^{th} digit 5 from dividend 1325578
\begin{array}{l}\phantom{49201)}0000\phantom{8}\\49201\overline{)1325578}\\\end{array}
Since 1325 is less than 49201, use the next digit 5 from dividend 1325578 and add 0 to the quotient
\begin{array}{l}\phantom{49201)}0000\phantom{9}\\49201\overline{)1325578}\\\end{array}
Use the 5^{th} digit 5 from dividend 1325578
\begin{array}{l}\phantom{49201)}00000\phantom{10}\\49201\overline{)1325578}\\\end{array}
Since 13255 is less than 49201, use the next digit 7 from dividend 1325578 and add 0 to the quotient
\begin{array}{l}\phantom{49201)}00000\phantom{11}\\49201\overline{)1325578}\\\end{array}
Use the 6^{th} digit 7 from dividend 1325578
\begin{array}{l}\phantom{49201)}000002\phantom{12}\\49201\overline{)1325578}\\\phantom{49201)}\underline{\phantom{9}98402\phantom{9}}\\\phantom{49201)9}34155\\\end{array}
Find closest multiple of 49201 to 132557. We see that 2 \times 49201 = 98402 is the nearest. Now subtract 98402 from 132557 to get reminder 34155. Add 2 to quotient.
\begin{array}{l}\phantom{49201)}000002\phantom{13}\\49201\overline{)1325578}\\\phantom{49201)}\underline{\phantom{9}98402\phantom{9}}\\\phantom{49201)9}341558\\\end{array}
Use the 7^{th} digit 8 from dividend 1325578
\begin{array}{l}\phantom{49201)}0000026\phantom{14}\\49201\overline{)1325578}\\\phantom{49201)}\underline{\phantom{9}98402\phantom{9}}\\\phantom{49201)9}341558\\\phantom{49201)}\underline{\phantom{9}295206\phantom{}}\\\phantom{49201)99}46352\\\end{array}
Find closest multiple of 49201 to 341558. We see that 6 \times 49201 = 295206 is the nearest. Now subtract 295206 from 341558 to get reminder 46352. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }46352
Since 46352 is less than 49201, stop the division. The reminder is 46352. The topmost line 0000026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}