Solve for x
x = \frac{\sqrt{18209}}{131} \approx 1.030081891
x = -\frac{\sqrt{18209}}{131} \approx -1.030081891
Graph
Share
Copied to clipboard
132x^{2}-132=x^{2}+7
Use the distributive property to multiply 132 by x^{2}-1.
132x^{2}-132-x^{2}=7
Subtract x^{2} from both sides.
131x^{2}-132=7
Combine 132x^{2} and -x^{2} to get 131x^{2}.
131x^{2}=7+132
Add 132 to both sides.
131x^{2}=139
Add 7 and 132 to get 139.
x^{2}=\frac{139}{131}
Divide both sides by 131.
x=\frac{\sqrt{18209}}{131} x=-\frac{\sqrt{18209}}{131}
Take the square root of both sides of the equation.
132x^{2}-132=x^{2}+7
Use the distributive property to multiply 132 by x^{2}-1.
132x^{2}-132-x^{2}=7
Subtract x^{2} from both sides.
131x^{2}-132=7
Combine 132x^{2} and -x^{2} to get 131x^{2}.
131x^{2}-132-7=0
Subtract 7 from both sides.
131x^{2}-139=0
Subtract 7 from -132 to get -139.
x=\frac{0±\sqrt{0^{2}-4\times 131\left(-139\right)}}{2\times 131}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 131 for a, 0 for b, and -139 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 131\left(-139\right)}}{2\times 131}
Square 0.
x=\frac{0±\sqrt{-524\left(-139\right)}}{2\times 131}
Multiply -4 times 131.
x=\frac{0±\sqrt{72836}}{2\times 131}
Multiply -524 times -139.
x=\frac{0±2\sqrt{18209}}{2\times 131}
Take the square root of 72836.
x=\frac{0±2\sqrt{18209}}{262}
Multiply 2 times 131.
x=\frac{\sqrt{18209}}{131}
Now solve the equation x=\frac{0±2\sqrt{18209}}{262} when ± is plus.
x=-\frac{\sqrt{18209}}{131}
Now solve the equation x=\frac{0±2\sqrt{18209}}{262} when ± is minus.
x=\frac{\sqrt{18209}}{131} x=-\frac{\sqrt{18209}}{131}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}