Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)132}\\\end{array}
Use the 1^{st} digit 1 from dividend 132
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)132}\\\end{array}
Since 1 is less than 72, use the next digit 3 from dividend 132 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)132}\\\end{array}
Use the 2^{nd} digit 3 from dividend 132
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)132}\\\end{array}
Since 13 is less than 72, use the next digit 2 from dividend 132 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)132}\\\end{array}
Use the 3^{rd} digit 2 from dividend 132
\begin{array}{l}\phantom{72)}001\phantom{6}\\72\overline{)132}\\\phantom{72)}\underline{\phantom{9}72\phantom{}}\\\phantom{72)9}60\\\end{array}
Find closest multiple of 72 to 132. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 132 to get reminder 60. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }60
Since 60 is less than 72, stop the division. The reminder is 60. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}