Evaluate
256
Factor
2^{8}
Share
Copied to clipboard
\begin{array}{l}\phantom{512)}\phantom{1}\\512\overline{)131072}\\\end{array}
Use the 1^{st} digit 1 from dividend 131072
\begin{array}{l}\phantom{512)}0\phantom{2}\\512\overline{)131072}\\\end{array}
Since 1 is less than 512, use the next digit 3 from dividend 131072 and add 0 to the quotient
\begin{array}{l}\phantom{512)}0\phantom{3}\\512\overline{)131072}\\\end{array}
Use the 2^{nd} digit 3 from dividend 131072
\begin{array}{l}\phantom{512)}00\phantom{4}\\512\overline{)131072}\\\end{array}
Since 13 is less than 512, use the next digit 1 from dividend 131072 and add 0 to the quotient
\begin{array}{l}\phantom{512)}00\phantom{5}\\512\overline{)131072}\\\end{array}
Use the 3^{rd} digit 1 from dividend 131072
\begin{array}{l}\phantom{512)}000\phantom{6}\\512\overline{)131072}\\\end{array}
Since 131 is less than 512, use the next digit 0 from dividend 131072 and add 0 to the quotient
\begin{array}{l}\phantom{512)}000\phantom{7}\\512\overline{)131072}\\\end{array}
Use the 4^{th} digit 0 from dividend 131072
\begin{array}{l}\phantom{512)}0002\phantom{8}\\512\overline{)131072}\\\phantom{512)}\underline{\phantom{}1024\phantom{99}}\\\phantom{512)9}286\\\end{array}
Find closest multiple of 512 to 1310. We see that 2 \times 512 = 1024 is the nearest. Now subtract 1024 from 1310 to get reminder 286. Add 2 to quotient.
\begin{array}{l}\phantom{512)}0002\phantom{9}\\512\overline{)131072}\\\phantom{512)}\underline{\phantom{}1024\phantom{99}}\\\phantom{512)9}2867\\\end{array}
Use the 5^{th} digit 7 from dividend 131072
\begin{array}{l}\phantom{512)}00025\phantom{10}\\512\overline{)131072}\\\phantom{512)}\underline{\phantom{}1024\phantom{99}}\\\phantom{512)9}2867\\\phantom{512)}\underline{\phantom{9}2560\phantom{9}}\\\phantom{512)99}307\\\end{array}
Find closest multiple of 512 to 2867. We see that 5 \times 512 = 2560 is the nearest. Now subtract 2560 from 2867 to get reminder 307. Add 5 to quotient.
\begin{array}{l}\phantom{512)}00025\phantom{11}\\512\overline{)131072}\\\phantom{512)}\underline{\phantom{}1024\phantom{99}}\\\phantom{512)9}2867\\\phantom{512)}\underline{\phantom{9}2560\phantom{9}}\\\phantom{512)99}3072\\\end{array}
Use the 6^{th} digit 2 from dividend 131072
\begin{array}{l}\phantom{512)}000256\phantom{12}\\512\overline{)131072}\\\phantom{512)}\underline{\phantom{}1024\phantom{99}}\\\phantom{512)9}2867\\\phantom{512)}\underline{\phantom{9}2560\phantom{9}}\\\phantom{512)99}3072\\\phantom{512)}\underline{\phantom{99}3072\phantom{}}\\\phantom{512)999999}0\\\end{array}
Find closest multiple of 512 to 3072. We see that 6 \times 512 = 3072 is the nearest. Now subtract 3072 from 3072 to get reminder 0. Add 6 to quotient.
\text{Quotient: }256 \text{Reminder: }0
Since 0 is less than 512, stop the division. The reminder is 0. The topmost line 000256 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 256.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}