Evaluate
\frac{131}{11}\approx 11.909090909
Factor
\frac{131}{11} = 11\frac{10}{11} = 11.909090909090908
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)131}\\\end{array}
Use the 1^{st} digit 1 from dividend 131
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)131}\\\end{array}
Since 1 is less than 11, use the next digit 3 from dividend 131 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)131}\\\end{array}
Use the 2^{nd} digit 3 from dividend 131
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)131}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}2\\\end{array}
Find closest multiple of 11 to 13. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 13 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)131}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}21\\\end{array}
Use the 3^{rd} digit 1 from dividend 131
\begin{array}{l}\phantom{11)}011\phantom{6}\\11\overline{)131}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}21\\\phantom{11)}\underline{\phantom{9}11\phantom{}}\\\phantom{11)9}10\\\end{array}
Find closest multiple of 11 to 21. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 21 to get reminder 10. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }10
Since 10 is less than 11, stop the division. The reminder is 10. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}