Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1300aa=a\times 150000-\left(9600a+288000\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
1300a^{2}=a\times 150000-\left(9600a+288000\right)
Multiply a and a to get a^{2}.
1300a^{2}=a\times 150000-9600a-288000
To find the opposite of 9600a+288000, find the opposite of each term.
1300a^{2}=140400a-288000
Combine a\times 150000 and -9600a to get 140400a.
1300a^{2}-140400a=-288000
Subtract 140400a from both sides.
1300a^{2}-140400a+288000=0
Add 288000 to both sides.
a=\frac{-\left(-140400\right)±\sqrt{\left(-140400\right)^{2}-4\times 1300\times 288000}}{2\times 1300}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1300 for a, -140400 for b, and 288000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-140400\right)±\sqrt{19712160000-4\times 1300\times 288000}}{2\times 1300}
Square -140400.
a=\frac{-\left(-140400\right)±\sqrt{19712160000-5200\times 288000}}{2\times 1300}
Multiply -4 times 1300.
a=\frac{-\left(-140400\right)±\sqrt{19712160000-1497600000}}{2\times 1300}
Multiply -5200 times 288000.
a=\frac{-\left(-140400\right)±\sqrt{18214560000}}{2\times 1300}
Add 19712160000 to -1497600000.
a=\frac{-\left(-140400\right)±1200\sqrt{12649}}{2\times 1300}
Take the square root of 18214560000.
a=\frac{140400±1200\sqrt{12649}}{2\times 1300}
The opposite of -140400 is 140400.
a=\frac{140400±1200\sqrt{12649}}{2600}
Multiply 2 times 1300.
a=\frac{1200\sqrt{12649}+140400}{2600}
Now solve the equation a=\frac{140400±1200\sqrt{12649}}{2600} when ± is plus. Add 140400 to 1200\sqrt{12649}.
a=\frac{6\sqrt{12649}}{13}+54
Divide 140400+1200\sqrt{12649} by 2600.
a=\frac{140400-1200\sqrt{12649}}{2600}
Now solve the equation a=\frac{140400±1200\sqrt{12649}}{2600} when ± is minus. Subtract 1200\sqrt{12649} from 140400.
a=-\frac{6\sqrt{12649}}{13}+54
Divide 140400-1200\sqrt{12649} by 2600.
a=\frac{6\sqrt{12649}}{13}+54 a=-\frac{6\sqrt{12649}}{13}+54
The equation is now solved.
1300aa=a\times 150000-\left(9600a+288000\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
1300a^{2}=a\times 150000-\left(9600a+288000\right)
Multiply a and a to get a^{2}.
1300a^{2}=a\times 150000-9600a-288000
To find the opposite of 9600a+288000, find the opposite of each term.
1300a^{2}=140400a-288000
Combine a\times 150000 and -9600a to get 140400a.
1300a^{2}-140400a=-288000
Subtract 140400a from both sides.
\frac{1300a^{2}-140400a}{1300}=-\frac{288000}{1300}
Divide both sides by 1300.
a^{2}+\left(-\frac{140400}{1300}\right)a=-\frac{288000}{1300}
Dividing by 1300 undoes the multiplication by 1300.
a^{2}-108a=-\frac{288000}{1300}
Divide -140400 by 1300.
a^{2}-108a=-\frac{2880}{13}
Reduce the fraction \frac{-288000}{1300} to lowest terms by extracting and canceling out 100.
a^{2}-108a+\left(-54\right)^{2}=-\frac{2880}{13}+\left(-54\right)^{2}
Divide -108, the coefficient of the x term, by 2 to get -54. Then add the square of -54 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-108a+2916=-\frac{2880}{13}+2916
Square -54.
a^{2}-108a+2916=\frac{35028}{13}
Add -\frac{2880}{13} to 2916.
\left(a-54\right)^{2}=\frac{35028}{13}
Factor a^{2}-108a+2916. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-54\right)^{2}}=\sqrt{\frac{35028}{13}}
Take the square root of both sides of the equation.
a-54=\frac{6\sqrt{12649}}{13} a-54=-\frac{6\sqrt{12649}}{13}
Simplify.
a=\frac{6\sqrt{12649}}{13}+54 a=-\frac{6\sqrt{12649}}{13}+54
Add 54 to both sides of the equation.