Solve for x
x = \frac{84 \sqrt{790} - 504}{13} \approx 142.844834322
x=\frac{-84\sqrt{790}-504}{13}\approx -220.383295861
Graph
Share
Copied to clipboard
1300x^{2}=18\times 5600\left(406-x\right)
Multiply both sides of the equation by 2.
1300x^{2}=100800\left(406-x\right)
Multiply 18 and 5600 to get 100800.
1300x^{2}=40924800-100800x
Use the distributive property to multiply 100800 by 406-x.
1300x^{2}-40924800=-100800x
Subtract 40924800 from both sides.
1300x^{2}-40924800+100800x=0
Add 100800x to both sides.
1300x^{2}+100800x-40924800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100800±\sqrt{100800^{2}-4\times 1300\left(-40924800\right)}}{2\times 1300}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1300 for a, 100800 for b, and -40924800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100800±\sqrt{10160640000-4\times 1300\left(-40924800\right)}}{2\times 1300}
Square 100800.
x=\frac{-100800±\sqrt{10160640000-5200\left(-40924800\right)}}{2\times 1300}
Multiply -4 times 1300.
x=\frac{-100800±\sqrt{10160640000+212808960000}}{2\times 1300}
Multiply -5200 times -40924800.
x=\frac{-100800±\sqrt{222969600000}}{2\times 1300}
Add 10160640000 to 212808960000.
x=\frac{-100800±16800\sqrt{790}}{2\times 1300}
Take the square root of 222969600000.
x=\frac{-100800±16800\sqrt{790}}{2600}
Multiply 2 times 1300.
x=\frac{16800\sqrt{790}-100800}{2600}
Now solve the equation x=\frac{-100800±16800\sqrt{790}}{2600} when ± is plus. Add -100800 to 16800\sqrt{790}.
x=\frac{84\sqrt{790}-504}{13}
Divide -100800+16800\sqrt{790} by 2600.
x=\frac{-16800\sqrt{790}-100800}{2600}
Now solve the equation x=\frac{-100800±16800\sqrt{790}}{2600} when ± is minus. Subtract 16800\sqrt{790} from -100800.
x=\frac{-84\sqrt{790}-504}{13}
Divide -100800-16800\sqrt{790} by 2600.
x=\frac{84\sqrt{790}-504}{13} x=\frac{-84\sqrt{790}-504}{13}
The equation is now solved.
1300x^{2}=18\times 5600\left(406-x\right)
Multiply both sides of the equation by 2.
1300x^{2}=100800\left(406-x\right)
Multiply 18 and 5600 to get 100800.
1300x^{2}=40924800-100800x
Use the distributive property to multiply 100800 by 406-x.
1300x^{2}+100800x=40924800
Add 100800x to both sides.
\frac{1300x^{2}+100800x}{1300}=\frac{40924800}{1300}
Divide both sides by 1300.
x^{2}+\frac{100800}{1300}x=\frac{40924800}{1300}
Dividing by 1300 undoes the multiplication by 1300.
x^{2}+\frac{1008}{13}x=\frac{40924800}{1300}
Reduce the fraction \frac{100800}{1300} to lowest terms by extracting and canceling out 100.
x^{2}+\frac{1008}{13}x=\frac{409248}{13}
Reduce the fraction \frac{40924800}{1300} to lowest terms by extracting and canceling out 100.
x^{2}+\frac{1008}{13}x+\left(\frac{504}{13}\right)^{2}=\frac{409248}{13}+\left(\frac{504}{13}\right)^{2}
Divide \frac{1008}{13}, the coefficient of the x term, by 2 to get \frac{504}{13}. Then add the square of \frac{504}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1008}{13}x+\frac{254016}{169}=\frac{409248}{13}+\frac{254016}{169}
Square \frac{504}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1008}{13}x+\frac{254016}{169}=\frac{5574240}{169}
Add \frac{409248}{13} to \frac{254016}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{504}{13}\right)^{2}=\frac{5574240}{169}
Factor x^{2}+\frac{1008}{13}x+\frac{254016}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{504}{13}\right)^{2}}=\sqrt{\frac{5574240}{169}}
Take the square root of both sides of the equation.
x+\frac{504}{13}=\frac{84\sqrt{790}}{13} x+\frac{504}{13}=-\frac{84\sqrt{790}}{13}
Simplify.
x=\frac{84\sqrt{790}-504}{13} x=\frac{-84\sqrt{790}-504}{13}
Subtract \frac{504}{13} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}