Evaluate
13
Factor
13
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)130}\\\end{array}
Use the 1^{st} digit 1 from dividend 130
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)130}\\\end{array}
Since 1 is less than 10, use the next digit 3 from dividend 130 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)130}\\\end{array}
Use the 2^{nd} digit 3 from dividend 130
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)130}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}3\\\end{array}
Find closest multiple of 10 to 13. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 13 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)130}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}30\\\end{array}
Use the 3^{rd} digit 0 from dividend 130
\begin{array}{l}\phantom{10)}013\phantom{6}\\10\overline{)130}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}30\\\phantom{10)}\underline{\phantom{9}30\phantom{}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 30. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 30 to get reminder 0. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }0
Since 0 is less than 10, stop the division. The reminder is 0. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}