Solve for y
y=\frac{9x^{2}}{2}+\frac{3x}{2}+10
Solve for x (complex solution)
x=\frac{\sqrt{8y-79}-1}{6}
x=\frac{-\sqrt{8y-79}-1}{6}
Solve for x
x=\frac{-\sqrt{8y-79}-1}{6}
x=\frac{\sqrt{8y-79}-1}{6}\text{, }y\geq \frac{79}{8}
Graph
Share
Copied to clipboard
13-\left(3x-1\right)\times 3=2y-\left(3x+2\right)^{2}
Multiply 3 and 1 to get 3.
13-\left(9x-3\right)=2y-\left(3x+2\right)^{2}
Use the distributive property to multiply 3x-1 by 3.
13-9x+3=2y-\left(3x+2\right)^{2}
To find the opposite of 9x-3, find the opposite of each term.
16-9x=2y-\left(3x+2\right)^{2}
Add 13 and 3 to get 16.
16-9x=2y-\left(9x^{2}+12x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
16-9x=2y-9x^{2}-12x-4
To find the opposite of 9x^{2}+12x+4, find the opposite of each term.
2y-9x^{2}-12x-4=16-9x
Swap sides so that all variable terms are on the left hand side.
2y-12x-4=16-9x+9x^{2}
Add 9x^{2} to both sides.
2y-4=16-9x+9x^{2}+12x
Add 12x to both sides.
2y-4=16+3x+9x^{2}
Combine -9x and 12x to get 3x.
2y=16+3x+9x^{2}+4
Add 4 to both sides.
2y=20+3x+9x^{2}
Add 16 and 4 to get 20.
2y=9x^{2}+3x+20
The equation is in standard form.
\frac{2y}{2}=\frac{9x^{2}+3x+20}{2}
Divide both sides by 2.
y=\frac{9x^{2}+3x+20}{2}
Dividing by 2 undoes the multiplication by 2.
y=\frac{9x^{2}}{2}+\frac{3x}{2}+10
Divide 20+3x+9x^{2} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}