Factor
\left(x-2\right)\left(13x+46\right)
Evaluate
\left(x-2\right)\left(13x+46\right)
Graph
Share
Copied to clipboard
a+b=20 ab=13\left(-92\right)=-1196
Factor the expression by grouping. First, the expression needs to be rewritten as 13x^{2}+ax+bx-92. To find a and b, set up a system to be solved.
-1,1196 -2,598 -4,299 -13,92 -23,52 -26,46
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1196.
-1+1196=1195 -2+598=596 -4+299=295 -13+92=79 -23+52=29 -26+46=20
Calculate the sum for each pair.
a=-26 b=46
The solution is the pair that gives sum 20.
\left(13x^{2}-26x\right)+\left(46x-92\right)
Rewrite 13x^{2}+20x-92 as \left(13x^{2}-26x\right)+\left(46x-92\right).
13x\left(x-2\right)+46\left(x-2\right)
Factor out 13x in the first and 46 in the second group.
\left(x-2\right)\left(13x+46\right)
Factor out common term x-2 by using distributive property.
13x^{2}+20x-92=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 13\left(-92\right)}}{2\times 13}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 13\left(-92\right)}}{2\times 13}
Square 20.
x=\frac{-20±\sqrt{400-52\left(-92\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-20±\sqrt{400+4784}}{2\times 13}
Multiply -52 times -92.
x=\frac{-20±\sqrt{5184}}{2\times 13}
Add 400 to 4784.
x=\frac{-20±72}{2\times 13}
Take the square root of 5184.
x=\frac{-20±72}{26}
Multiply 2 times 13.
x=\frac{52}{26}
Now solve the equation x=\frac{-20±72}{26} when ± is plus. Add -20 to 72.
x=2
Divide 52 by 26.
x=-\frac{92}{26}
Now solve the equation x=\frac{-20±72}{26} when ± is minus. Subtract 72 from -20.
x=-\frac{46}{13}
Reduce the fraction \frac{-92}{26} to lowest terms by extracting and canceling out 2.
13x^{2}+20x-92=13\left(x-2\right)\left(x-\left(-\frac{46}{13}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{46}{13} for x_{2}.
13x^{2}+20x-92=13\left(x-2\right)\left(x+\frac{46}{13}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
13x^{2}+20x-92=13\left(x-2\right)\times \frac{13x+46}{13}
Add \frac{46}{13} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
13x^{2}+20x-92=\left(x-2\right)\left(13x+46\right)
Cancel out 13, the greatest common factor in 13 and 13.
x ^ 2 +\frac{20}{13}x -\frac{92}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = -\frac{20}{13} rs = -\frac{92}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{10}{13} - u s = -\frac{10}{13} + u
Two numbers r and s sum up to -\frac{20}{13} exactly when the average of the two numbers is \frac{1}{2}*-\frac{20}{13} = -\frac{10}{13}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{10}{13} - u) (-\frac{10}{13} + u) = -\frac{92}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{92}{13}
\frac{100}{169} - u^2 = -\frac{92}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{92}{13}-\frac{100}{169} = -\frac{1296}{169}
Simplify the expression by subtracting \frac{100}{169} on both sides
u^2 = \frac{1296}{169} u = \pm\sqrt{\frac{1296}{169}} = \pm \frac{36}{13}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{10}{13} - \frac{36}{13} = -3.538 s = -\frac{10}{13} + \frac{36}{13} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}