Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x^{2}+16x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\times 13\times 4}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, 16 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 13\times 4}}{2\times 13}
Square 16.
x=\frac{-16±\sqrt{256-52\times 4}}{2\times 13}
Multiply -4 times 13.
x=\frac{-16±\sqrt{256-208}}{2\times 13}
Multiply -52 times 4.
x=\frac{-16±\sqrt{48}}{2\times 13}
Add 256 to -208.
x=\frac{-16±4\sqrt{3}}{2\times 13}
Take the square root of 48.
x=\frac{-16±4\sqrt{3}}{26}
Multiply 2 times 13.
x=\frac{4\sqrt{3}-16}{26}
Now solve the equation x=\frac{-16±4\sqrt{3}}{26} when ± is plus. Add -16 to 4\sqrt{3}.
x=\frac{2\sqrt{3}-8}{13}
Divide -16+4\sqrt{3} by 26.
x=\frac{-4\sqrt{3}-16}{26}
Now solve the equation x=\frac{-16±4\sqrt{3}}{26} when ± is minus. Subtract 4\sqrt{3} from -16.
x=\frac{-2\sqrt{3}-8}{13}
Divide -16-4\sqrt{3} by 26.
x=\frac{2\sqrt{3}-8}{13} x=\frac{-2\sqrt{3}-8}{13}
The equation is now solved.
13x^{2}+16x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}+16x+4-4=-4
Subtract 4 from both sides of the equation.
13x^{2}+16x=-4
Subtracting 4 from itself leaves 0.
\frac{13x^{2}+16x}{13}=-\frac{4}{13}
Divide both sides by 13.
x^{2}+\frac{16}{13}x=-\frac{4}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}+\frac{16}{13}x+\left(\frac{8}{13}\right)^{2}=-\frac{4}{13}+\left(\frac{8}{13}\right)^{2}
Divide \frac{16}{13}, the coefficient of the x term, by 2 to get \frac{8}{13}. Then add the square of \frac{8}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{13}x+\frac{64}{169}=-\frac{4}{13}+\frac{64}{169}
Square \frac{8}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{13}x+\frac{64}{169}=\frac{12}{169}
Add -\frac{4}{13} to \frac{64}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{13}\right)^{2}=\frac{12}{169}
Factor x^{2}+\frac{16}{13}x+\frac{64}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{13}\right)^{2}}=\sqrt{\frac{12}{169}}
Take the square root of both sides of the equation.
x+\frac{8}{13}=\frac{2\sqrt{3}}{13} x+\frac{8}{13}=-\frac{2\sqrt{3}}{13}
Simplify.
x=\frac{2\sqrt{3}-8}{13} x=\frac{-2\sqrt{3}-8}{13}
Subtract \frac{8}{13} from both sides of the equation.
x ^ 2 +\frac{16}{13}x +\frac{4}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = -\frac{16}{13} rs = \frac{4}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{8}{13} - u s = -\frac{8}{13} + u
Two numbers r and s sum up to -\frac{16}{13} exactly when the average of the two numbers is \frac{1}{2}*-\frac{16}{13} = -\frac{8}{13}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{8}{13} - u) (-\frac{8}{13} + u) = \frac{4}{13}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{13}
\frac{64}{169} - u^2 = \frac{4}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{13}-\frac{64}{169} = -\frac{12}{169}
Simplify the expression by subtracting \frac{64}{169} on both sides
u^2 = \frac{12}{169} u = \pm\sqrt{\frac{12}{169}} = \pm \frac{\sqrt{12}}{13}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{8}{13} - \frac{\sqrt{12}}{13} = -0.882 s = -\frac{8}{13} + \frac{\sqrt{12}}{13} = -0.349
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.