Solve for x
x=9
Graph
Share
Copied to clipboard
\left(13-\sqrt{13+4x}\right)^{2}=\left(2\sqrt{x}\right)^{2}
Square both sides of the equation.
169-26\sqrt{13+4x}+\left(\sqrt{13+4x}\right)^{2}=\left(2\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-\sqrt{13+4x}\right)^{2}.
169-26\sqrt{13+4x}+13+4x=\left(2\sqrt{x}\right)^{2}
Calculate \sqrt{13+4x} to the power of 2 and get 13+4x.
182-26\sqrt{13+4x}+4x=\left(2\sqrt{x}\right)^{2}
Add 169 and 13 to get 182.
182-26\sqrt{13+4x}+4x=2^{2}\left(\sqrt{x}\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
182-26\sqrt{13+4x}+4x=4\left(\sqrt{x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
182-26\sqrt{13+4x}+4x=4x
Calculate \sqrt{x} to the power of 2 and get x.
182-26\sqrt{13+4x}+4x-4x=0
Subtract 4x from both sides.
182-26\sqrt{13+4x}=0
Combine 4x and -4x to get 0.
-26\sqrt{13+4x}=-182
Subtract 182 from both sides. Anything subtracted from zero gives its negation.
\sqrt{13+4x}=\frac{-182}{-26}
Divide both sides by -26.
\sqrt{13+4x}=7
Divide -182 by -26 to get 7.
4x+13=49
Square both sides of the equation.
4x+13-13=49-13
Subtract 13 from both sides of the equation.
4x=49-13
Subtracting 13 from itself leaves 0.
4x=36
Subtract 13 from 49.
\frac{4x}{4}=\frac{36}{4}
Divide both sides by 4.
x=\frac{36}{4}
Dividing by 4 undoes the multiplication by 4.
x=9
Divide 36 by 4.
13-\sqrt{13+4\times 9}=2\sqrt{9}
Substitute 9 for x in the equation 13-\sqrt{13+4x}=2\sqrt{x}.
6=6
Simplify. The value x=9 satisfies the equation.
x=9
Equation -\sqrt{4x+13}+13=2\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}