Solve for x
x=-\frac{18y}{13}+\frac{1}{26}
Solve for y
y=-\frac{13x}{18}+\frac{1}{36}
Graph
Share
Copied to clipboard
\frac{13}{2}-13x-18y=6
Use the distributive property to multiply 13 by \frac{1}{2}-x.
-13x-18y=6-\frac{13}{2}
Subtract \frac{13}{2} from both sides.
-13x-18y=-\frac{1}{2}
Subtract \frac{13}{2} from 6 to get -\frac{1}{2}.
-13x=-\frac{1}{2}+18y
Add 18y to both sides.
-13x=18y-\frac{1}{2}
The equation is in standard form.
\frac{-13x}{-13}=\frac{18y-\frac{1}{2}}{-13}
Divide both sides by -13.
x=\frac{18y-\frac{1}{2}}{-13}
Dividing by -13 undoes the multiplication by -13.
x=-\frac{18y}{13}+\frac{1}{26}
Divide -\frac{1}{2}+18y by -13.
\frac{13}{2}-13x-18y=6
Use the distributive property to multiply 13 by \frac{1}{2}-x.
-13x-18y=6-\frac{13}{2}
Subtract \frac{13}{2} from both sides.
-13x-18y=-\frac{1}{2}
Subtract \frac{13}{2} from 6 to get -\frac{1}{2}.
-18y=-\frac{1}{2}+13x
Add 13x to both sides.
-18y=13x-\frac{1}{2}
The equation is in standard form.
\frac{-18y}{-18}=\frac{13x-\frac{1}{2}}{-18}
Divide both sides by -18.
y=\frac{13x-\frac{1}{2}}{-18}
Dividing by -18 undoes the multiplication by -18.
y=-\frac{13x}{18}+\frac{1}{36}
Divide -\frac{1}{2}+13x by -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}