Solve for x (complex solution)
x=\frac{\sqrt{767}i}{26}+\frac{3}{2}\approx 1.5+1.065183263i
x=-\frac{\sqrt{767}i}{26}+\frac{3}{2}\approx 1.5-1.065183263i
Graph
Share
Copied to clipboard
13x^{2}-39x+44=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 13\times 44}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -39 for b, and 44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 13\times 44}}{2\times 13}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521-52\times 44}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-39\right)±\sqrt{1521-2288}}{2\times 13}
Multiply -52 times 44.
x=\frac{-\left(-39\right)±\sqrt{-767}}{2\times 13}
Add 1521 to -2288.
x=\frac{-\left(-39\right)±\sqrt{767}i}{2\times 13}
Take the square root of -767.
x=\frac{39±\sqrt{767}i}{2\times 13}
The opposite of -39 is 39.
x=\frac{39±\sqrt{767}i}{26}
Multiply 2 times 13.
x=\frac{39+\sqrt{767}i}{26}
Now solve the equation x=\frac{39±\sqrt{767}i}{26} when ± is plus. Add 39 to i\sqrt{767}.
x=\frac{\sqrt{767}i}{26}+\frac{3}{2}
Divide 39+i\sqrt{767} by 26.
x=\frac{-\sqrt{767}i+39}{26}
Now solve the equation x=\frac{39±\sqrt{767}i}{26} when ± is minus. Subtract i\sqrt{767} from 39.
x=-\frac{\sqrt{767}i}{26}+\frac{3}{2}
Divide 39-i\sqrt{767} by 26.
x=\frac{\sqrt{767}i}{26}+\frac{3}{2} x=-\frac{\sqrt{767}i}{26}+\frac{3}{2}
The equation is now solved.
13x^{2}-39x+44=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-39x+44-44=-44
Subtract 44 from both sides of the equation.
13x^{2}-39x=-44
Subtracting 44 from itself leaves 0.
\frac{13x^{2}-39x}{13}=-\frac{44}{13}
Divide both sides by 13.
x^{2}+\left(-\frac{39}{13}\right)x=-\frac{44}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-3x=-\frac{44}{13}
Divide -39 by 13.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{44}{13}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{44}{13}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{59}{52}
Add -\frac{44}{13} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=-\frac{59}{52}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{59}{52}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{767}i}{26} x-\frac{3}{2}=-\frac{\sqrt{767}i}{26}
Simplify.
x=\frac{\sqrt{767}i}{26}+\frac{3}{2} x=-\frac{\sqrt{767}i}{26}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}