Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x^{2}-32x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 13}}{2\times 13}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 13}}{2\times 13}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-52}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-32\right)±\sqrt{972}}{2\times 13}
Add 1024 to -52.
x=\frac{-\left(-32\right)±18\sqrt{3}}{2\times 13}
Take the square root of 972.
x=\frac{32±18\sqrt{3}}{2\times 13}
The opposite of -32 is 32.
x=\frac{32±18\sqrt{3}}{26}
Multiply 2 times 13.
x=\frac{18\sqrt{3}+32}{26}
Now solve the equation x=\frac{32±18\sqrt{3}}{26} when ± is plus. Add 32 to 18\sqrt{3}.
x=\frac{9\sqrt{3}+16}{13}
Divide 32+18\sqrt{3} by 26.
x=\frac{32-18\sqrt{3}}{26}
Now solve the equation x=\frac{32±18\sqrt{3}}{26} when ± is minus. Subtract 18\sqrt{3} from 32.
x=\frac{16-9\sqrt{3}}{13}
Divide 32-18\sqrt{3} by 26.
13x^{2}-32x+1=13\left(x-\frac{9\sqrt{3}+16}{13}\right)\left(x-\frac{16-9\sqrt{3}}{13}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{16+9\sqrt{3}}{13} for x_{1} and \frac{16-9\sqrt{3}}{13} for x_{2}.