Solve for v
v\leq -21
Share
Copied to clipboard
4-\frac{3}{7}v\geq 13
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-\frac{3}{7}v\geq 13-4
Subtract 4 from both sides.
-\frac{3}{7}v\geq 9
Subtract 4 from 13 to get 9.
v\leq 9\left(-\frac{7}{3}\right)
Multiply both sides by -\frac{7}{3}, the reciprocal of -\frac{3}{7}. Since -\frac{3}{7} is negative, the inequality direction is changed.
v\leq \frac{9\left(-7\right)}{3}
Express 9\left(-\frac{7}{3}\right) as a single fraction.
v\leq \frac{-63}{3}
Multiply 9 and -7 to get -63.
v\leq -21
Divide -63 by 3 to get -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}