Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

169-x^{2}=\left(2\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 13 to the power of 2 and get 169.
169-x^{2}=2^{2}\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Expand \left(2\sqrt{61}\right)^{2}.
169-x^{2}=4\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}=4\times 61-\left(2x\right)^{2}
The square of \sqrt{61} is 61.
169-x^{2}=244-\left(2x\right)^{2}
Multiply 4 and 61 to get 244.
169-x^{2}=244-2^{2}x^{2}
Expand \left(2x\right)^{2}.
169-x^{2}=244-4x^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}-244=-4x^{2}
Subtract 244 from both sides.
-75-x^{2}=-4x^{2}
Subtract 244 from 169 to get -75.
-75-x^{2}+4x^{2}=0
Add 4x^{2} to both sides.
-75+3x^{2}=0
Combine -x^{2} and 4x^{2} to get 3x^{2}.
-25+x^{2}=0
Divide both sides by 3.
\left(x-5\right)\left(x+5\right)=0
Consider -25+x^{2}. Rewrite -25+x^{2} as x^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
To find equation solutions, solve x-5=0 and x+5=0.
169-x^{2}=\left(2\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 13 to the power of 2 and get 169.
169-x^{2}=2^{2}\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Expand \left(2\sqrt{61}\right)^{2}.
169-x^{2}=4\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}=4\times 61-\left(2x\right)^{2}
The square of \sqrt{61} is 61.
169-x^{2}=244-\left(2x\right)^{2}
Multiply 4 and 61 to get 244.
169-x^{2}=244-2^{2}x^{2}
Expand \left(2x\right)^{2}.
169-x^{2}=244-4x^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}+4x^{2}=244
Add 4x^{2} to both sides.
169+3x^{2}=244
Combine -x^{2} and 4x^{2} to get 3x^{2}.
3x^{2}=244-169
Subtract 169 from both sides.
3x^{2}=75
Subtract 169 from 244 to get 75.
x^{2}=\frac{75}{3}
Divide both sides by 3.
x^{2}=25
Divide 75 by 3 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
169-x^{2}=\left(2\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 13 to the power of 2 and get 169.
169-x^{2}=2^{2}\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Expand \left(2\sqrt{61}\right)^{2}.
169-x^{2}=4\left(\sqrt{61}\right)^{2}-\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}=4\times 61-\left(2x\right)^{2}
The square of \sqrt{61} is 61.
169-x^{2}=244-\left(2x\right)^{2}
Multiply 4 and 61 to get 244.
169-x^{2}=244-2^{2}x^{2}
Expand \left(2x\right)^{2}.
169-x^{2}=244-4x^{2}
Calculate 2 to the power of 2 and get 4.
169-x^{2}-244=-4x^{2}
Subtract 244 from both sides.
-75-x^{2}=-4x^{2}
Subtract 244 from 169 to get -75.
-75-x^{2}+4x^{2}=0
Add 4x^{2} to both sides.
-75+3x^{2}=0
Combine -x^{2} and 4x^{2} to get 3x^{2}.
3x^{2}-75=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-75\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-75\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-75\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{900}}{2\times 3}
Multiply -12 times -75.
x=\frac{0±30}{2\times 3}
Take the square root of 900.
x=\frac{0±30}{6}
Multiply 2 times 3.
x=5
Now solve the equation x=\frac{0±30}{6} when ± is plus. Divide 30 by 6.
x=-5
Now solve the equation x=\frac{0±30}{6} when ± is minus. Divide -30 by 6.
x=5 x=-5
The equation is now solved.