Evaluate
\frac{128114}{13}\approx 9854.923076923
Factor
\frac{2 \cdot 7 \cdot 9151}{13} = 9854\frac{12}{13} = 9854.923076923076
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)128114}\\\end{array}
Use the 1^{st} digit 1 from dividend 128114
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)128114}\\\end{array}
Since 1 is less than 13, use the next digit 2 from dividend 128114 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)128114}\\\end{array}
Use the 2^{nd} digit 2 from dividend 128114
\begin{array}{l}\phantom{13)}00\phantom{4}\\13\overline{)128114}\\\end{array}
Since 12 is less than 13, use the next digit 8 from dividend 128114 and add 0 to the quotient
\begin{array}{l}\phantom{13)}00\phantom{5}\\13\overline{)128114}\\\end{array}
Use the 3^{rd} digit 8 from dividend 128114
\begin{array}{l}\phantom{13)}009\phantom{6}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}11\\\end{array}
Find closest multiple of 13 to 128. We see that 9 \times 13 = 117 is the nearest. Now subtract 117 from 128 to get reminder 11. Add 9 to quotient.
\begin{array}{l}\phantom{13)}009\phantom{7}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\end{array}
Use the 4^{th} digit 1 from dividend 128114
\begin{array}{l}\phantom{13)}0098\phantom{8}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\phantom{13)}\underline{\phantom{9}104\phantom{99}}\\\phantom{13)999}7\\\end{array}
Find closest multiple of 13 to 111. We see that 8 \times 13 = 104 is the nearest. Now subtract 104 from 111 to get reminder 7. Add 8 to quotient.
\begin{array}{l}\phantom{13)}0098\phantom{9}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\phantom{13)}\underline{\phantom{9}104\phantom{99}}\\\phantom{13)999}71\\\end{array}
Use the 5^{th} digit 1 from dividend 128114
\begin{array}{l}\phantom{13)}00985\phantom{10}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\phantom{13)}\underline{\phantom{9}104\phantom{99}}\\\phantom{13)999}71\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}6\\\end{array}
Find closest multiple of 13 to 71. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 71 to get reminder 6. Add 5 to quotient.
\begin{array}{l}\phantom{13)}00985\phantom{11}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\phantom{13)}\underline{\phantom{9}104\phantom{99}}\\\phantom{13)999}71\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}64\\\end{array}
Use the 6^{th} digit 4 from dividend 128114
\begin{array}{l}\phantom{13)}009854\phantom{12}\\13\overline{)128114}\\\phantom{13)}\underline{\phantom{}117\phantom{999}}\\\phantom{13)9}111\\\phantom{13)}\underline{\phantom{9}104\phantom{99}}\\\phantom{13)999}71\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}64\\\phantom{13)}\underline{\phantom{9999}52\phantom{}}\\\phantom{13)9999}12\\\end{array}
Find closest multiple of 13 to 64. We see that 4 \times 13 = 52 is the nearest. Now subtract 52 from 64 to get reminder 12. Add 4 to quotient.
\text{Quotient: }9854 \text{Reminder: }12
Since 12 is less than 13, stop the division. The reminder is 12. The topmost line 009854 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9854.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}