Evaluate
\frac{128039}{8965}\approx 14.282097044
Factor
\frac{61 \cdot 2099}{5 \cdot 11 \cdot 163} = 14\frac{2529}{8965} = 14.282097044060235
Share
Copied to clipboard
\begin{array}{l}\phantom{8965)}\phantom{1}\\8965\overline{)128039}\\\end{array}
Use the 1^{st} digit 1 from dividend 128039
\begin{array}{l}\phantom{8965)}0\phantom{2}\\8965\overline{)128039}\\\end{array}
Since 1 is less than 8965, use the next digit 2 from dividend 128039 and add 0 to the quotient
\begin{array}{l}\phantom{8965)}0\phantom{3}\\8965\overline{)128039}\\\end{array}
Use the 2^{nd} digit 2 from dividend 128039
\begin{array}{l}\phantom{8965)}00\phantom{4}\\8965\overline{)128039}\\\end{array}
Since 12 is less than 8965, use the next digit 8 from dividend 128039 and add 0 to the quotient
\begin{array}{l}\phantom{8965)}00\phantom{5}\\8965\overline{)128039}\\\end{array}
Use the 3^{rd} digit 8 from dividend 128039
\begin{array}{l}\phantom{8965)}000\phantom{6}\\8965\overline{)128039}\\\end{array}
Since 128 is less than 8965, use the next digit 0 from dividend 128039 and add 0 to the quotient
\begin{array}{l}\phantom{8965)}000\phantom{7}\\8965\overline{)128039}\\\end{array}
Use the 4^{th} digit 0 from dividend 128039
\begin{array}{l}\phantom{8965)}0000\phantom{8}\\8965\overline{)128039}\\\end{array}
Since 1280 is less than 8965, use the next digit 3 from dividend 128039 and add 0 to the quotient
\begin{array}{l}\phantom{8965)}0000\phantom{9}\\8965\overline{)128039}\\\end{array}
Use the 5^{th} digit 3 from dividend 128039
\begin{array}{l}\phantom{8965)}00001\phantom{10}\\8965\overline{)128039}\\\phantom{8965)}\underline{\phantom{9}8965\phantom{9}}\\\phantom{8965)9}3838\\\end{array}
Find closest multiple of 8965 to 12803. We see that 1 \times 8965 = 8965 is the nearest. Now subtract 8965 from 12803 to get reminder 3838. Add 1 to quotient.
\begin{array}{l}\phantom{8965)}00001\phantom{11}\\8965\overline{)128039}\\\phantom{8965)}\underline{\phantom{9}8965\phantom{9}}\\\phantom{8965)9}38389\\\end{array}
Use the 6^{th} digit 9 from dividend 128039
\begin{array}{l}\phantom{8965)}000014\phantom{12}\\8965\overline{)128039}\\\phantom{8965)}\underline{\phantom{9}8965\phantom{9}}\\\phantom{8965)9}38389\\\phantom{8965)}\underline{\phantom{9}35860\phantom{}}\\\phantom{8965)99}2529\\\end{array}
Find closest multiple of 8965 to 38389. We see that 4 \times 8965 = 35860 is the nearest. Now subtract 35860 from 38389 to get reminder 2529. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }2529
Since 2529 is less than 8965, stop the division. The reminder is 2529. The topmost line 000014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}