Evaluate
\frac{64}{25}=2.56
Factor
\frac{2 ^ {6}}{5 ^ {2}} = 2\frac{14}{25} = 2.56
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)1280}\\\end{array}
Use the 1^{st} digit 1 from dividend 1280
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)1280}\\\end{array}
Since 1 is less than 500, use the next digit 2 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)1280}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1280
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)1280}\\\end{array}
Since 12 is less than 500, use the next digit 8 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)1280}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1280
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)1280}\\\end{array}
Since 128 is less than 500, use the next digit 0 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)1280}\\\end{array}
Use the 4^{th} digit 0 from dividend 1280
\begin{array}{l}\phantom{500)}0002\phantom{8}\\500\overline{)1280}\\\phantom{500)}\underline{\phantom{}1000\phantom{}}\\\phantom{500)9}280\\\end{array}
Find closest multiple of 500 to 1280. We see that 2 \times 500 = 1000 is the nearest. Now subtract 1000 from 1280 to get reminder 280. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }280
Since 280 is less than 500, stop the division. The reminder is 280. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}