Evaluate
\frac{25}{22}\approx 1.136363636
Factor
\frac{5 ^ {2}}{2 \cdot 11} = 1\frac{3}{22} = 1.1363636363636365
Share
Copied to clipboard
\begin{array}{l}\phantom{1100)}\phantom{1}\\1100\overline{)1250}\\\end{array}
Use the 1^{st} digit 1 from dividend 1250
\begin{array}{l}\phantom{1100)}0\phantom{2}\\1100\overline{)1250}\\\end{array}
Since 1 is less than 1100, use the next digit 2 from dividend 1250 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}0\phantom{3}\\1100\overline{)1250}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1250
\begin{array}{l}\phantom{1100)}00\phantom{4}\\1100\overline{)1250}\\\end{array}
Since 12 is less than 1100, use the next digit 5 from dividend 1250 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}00\phantom{5}\\1100\overline{)1250}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1250
\begin{array}{l}\phantom{1100)}000\phantom{6}\\1100\overline{)1250}\\\end{array}
Since 125 is less than 1100, use the next digit 0 from dividend 1250 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}000\phantom{7}\\1100\overline{)1250}\\\end{array}
Use the 4^{th} digit 0 from dividend 1250
\begin{array}{l}\phantom{1100)}0001\phantom{8}\\1100\overline{)1250}\\\phantom{1100)}\underline{\phantom{}1100\phantom{}}\\\phantom{1100)9}150\\\end{array}
Find closest multiple of 1100 to 1250. We see that 1 \times 1100 = 1100 is the nearest. Now subtract 1100 from 1250 to get reminder 150. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }150
Since 150 is less than 1100, stop the division. The reminder is 150. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}