Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

125x^{2}-390x+36125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-390\right)±\sqrt{\left(-390\right)^{2}-4\times 125\times 36125}}{2\times 125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 125 for a, -390 for b, and 36125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-390\right)±\sqrt{152100-4\times 125\times 36125}}{2\times 125}
Square -390.
x=\frac{-\left(-390\right)±\sqrt{152100-500\times 36125}}{2\times 125}
Multiply -4 times 125.
x=\frac{-\left(-390\right)±\sqrt{152100-18062500}}{2\times 125}
Multiply -500 times 36125.
x=\frac{-\left(-390\right)±\sqrt{-17910400}}{2\times 125}
Add 152100 to -18062500.
x=\frac{-\left(-390\right)±40\sqrt{11194}i}{2\times 125}
Take the square root of -17910400.
x=\frac{390±40\sqrt{11194}i}{2\times 125}
The opposite of -390 is 390.
x=\frac{390±40\sqrt{11194}i}{250}
Multiply 2 times 125.
x=\frac{390+40\sqrt{11194}i}{250}
Now solve the equation x=\frac{390±40\sqrt{11194}i}{250} when ± is plus. Add 390 to 40i\sqrt{11194}.
x=\frac{39+4\sqrt{11194}i}{25}
Divide 390+40i\sqrt{11194} by 250.
x=\frac{-40\sqrt{11194}i+390}{250}
Now solve the equation x=\frac{390±40\sqrt{11194}i}{250} when ± is minus. Subtract 40i\sqrt{11194} from 390.
x=\frac{-4\sqrt{11194}i+39}{25}
Divide 390-40i\sqrt{11194} by 250.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
The equation is now solved.
125x^{2}-390x+36125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
125x^{2}-390x+36125-36125=-36125
Subtract 36125 from both sides of the equation.
125x^{2}-390x=-36125
Subtracting 36125 from itself leaves 0.
\frac{125x^{2}-390x}{125}=-\frac{36125}{125}
Divide both sides by 125.
x^{2}+\left(-\frac{390}{125}\right)x=-\frac{36125}{125}
Dividing by 125 undoes the multiplication by 125.
x^{2}-\frac{78}{25}x=-\frac{36125}{125}
Reduce the fraction \frac{-390}{125} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{78}{25}x=-289
Divide -36125 by 125.
x^{2}-\frac{78}{25}x+\left(-\frac{39}{25}\right)^{2}=-289+\left(-\frac{39}{25}\right)^{2}
Divide -\frac{78}{25}, the coefficient of the x term, by 2 to get -\frac{39}{25}. Then add the square of -\frac{39}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-289+\frac{1521}{625}
Square -\frac{39}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-\frac{179104}{625}
Add -289 to \frac{1521}{625}.
\left(x-\frac{39}{25}\right)^{2}=-\frac{179104}{625}
Factor x^{2}-\frac{78}{25}x+\frac{1521}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{25}\right)^{2}}=\sqrt{-\frac{179104}{625}}
Take the square root of both sides of the equation.
x-\frac{39}{25}=\frac{4\sqrt{11194}i}{25} x-\frac{39}{25}=-\frac{4\sqrt{11194}i}{25}
Simplify.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
Add \frac{39}{25} to both sides of the equation.