125 \% x \div y=x
Solve for x (complex solution)
\left\{\begin{matrix}x=0\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&y=\frac{5}{4}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=0\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&y=\frac{5}{4}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=\frac{5}{4}\text{, }&\text{unconditionally}\\y\neq 0\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{125}{100}x=xy
Multiply both sides of the equation by y.
\frac{5}{4}x=xy
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{5}{4}x-xy=0
Subtract xy from both sides.
\left(\frac{5}{4}-y\right)x=0
Combine all terms containing x.
x=0
Divide 0 by \frac{5}{4}-y.
\frac{125}{100}x=xy
Multiply both sides of the equation by y.
\frac{5}{4}x=xy
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{5}{4}x-xy=0
Subtract xy from both sides.
\left(\frac{5}{4}-y\right)x=0
Combine all terms containing x.
x=0
Divide 0 by \frac{5}{4}-y.
\frac{125}{100}x=xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
\frac{5}{4}x=xy
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
xy=\frac{5}{4}x
Swap sides so that all variable terms are on the left hand side.
xy=\frac{5x}{4}
The equation is in standard form.
\frac{xy}{x}=\frac{5x}{4x}
Divide both sides by x.
y=\frac{5x}{4x}
Dividing by x undoes the multiplication by x.
y=\frac{5}{4}
Divide \frac{5x}{4} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}