Evaluate
\frac{257}{250}=1.028
Factor
\frac{257}{2 \cdot 5 ^ {3}} = 1\frac{7}{250} = 1.028
Share
Copied to clipboard
\begin{array}{l}\phantom{12000)}\phantom{1}\\12000\overline{)12336}\\\end{array}
Use the 1^{st} digit 1 from dividend 12336
\begin{array}{l}\phantom{12000)}0\phantom{2}\\12000\overline{)12336}\\\end{array}
Since 1 is less than 12000, use the next digit 2 from dividend 12336 and add 0 to the quotient
\begin{array}{l}\phantom{12000)}0\phantom{3}\\12000\overline{)12336}\\\end{array}
Use the 2^{nd} digit 2 from dividend 12336
\begin{array}{l}\phantom{12000)}00\phantom{4}\\12000\overline{)12336}\\\end{array}
Since 12 is less than 12000, use the next digit 3 from dividend 12336 and add 0 to the quotient
\begin{array}{l}\phantom{12000)}00\phantom{5}\\12000\overline{)12336}\\\end{array}
Use the 3^{rd} digit 3 from dividend 12336
\begin{array}{l}\phantom{12000)}000\phantom{6}\\12000\overline{)12336}\\\end{array}
Since 123 is less than 12000, use the next digit 3 from dividend 12336 and add 0 to the quotient
\begin{array}{l}\phantom{12000)}000\phantom{7}\\12000\overline{)12336}\\\end{array}
Use the 4^{th} digit 3 from dividend 12336
\begin{array}{l}\phantom{12000)}0000\phantom{8}\\12000\overline{)12336}\\\end{array}
Since 1233 is less than 12000, use the next digit 6 from dividend 12336 and add 0 to the quotient
\begin{array}{l}\phantom{12000)}0000\phantom{9}\\12000\overline{)12336}\\\end{array}
Use the 5^{th} digit 6 from dividend 12336
\begin{array}{l}\phantom{12000)}00001\phantom{10}\\12000\overline{)12336}\\\phantom{12000)}\underline{\phantom{}12000\phantom{}}\\\phantom{12000)99}336\\\end{array}
Find closest multiple of 12000 to 12336. We see that 1 \times 12000 = 12000 is the nearest. Now subtract 12000 from 12336 to get reminder 336. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }336
Since 336 is less than 12000, stop the division. The reminder is 336. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}