Evaluate
\frac{123}{100}=1.23
Factor
\frac{3 \cdot 41}{2 ^ {2} \cdot 5 ^ {2}} = 1\frac{23}{100} = 1.23
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)123}\\\end{array}
Use the 1^{st} digit 1 from dividend 123
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)123}\\\end{array}
Since 1 is less than 100, use the next digit 2 from dividend 123 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)123}\\\end{array}
Use the 2^{nd} digit 2 from dividend 123
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)123}\\\end{array}
Since 12 is less than 100, use the next digit 3 from dividend 123 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)123}\\\end{array}
Use the 3^{rd} digit 3 from dividend 123
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)123}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)9}23\\\end{array}
Find closest multiple of 100 to 123. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 123 to get reminder 23. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }23
Since 23 is less than 100, stop the division. The reminder is 23. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}