Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

122y^{2}+11y-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-11±\sqrt{11^{2}-4\times 122\left(-15\right)}}{2\times 122}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-11±\sqrt{121-4\times 122\left(-15\right)}}{2\times 122}
Square 11.
y=\frac{-11±\sqrt{121-488\left(-15\right)}}{2\times 122}
Multiply -4 times 122.
y=\frac{-11±\sqrt{121+7320}}{2\times 122}
Multiply -488 times -15.
y=\frac{-11±\sqrt{7441}}{2\times 122}
Add 121 to 7320.
y=\frac{-11±\sqrt{7441}}{244}
Multiply 2 times 122.
y=\frac{\sqrt{7441}-11}{244}
Now solve the equation y=\frac{-11±\sqrt{7441}}{244} when ± is plus. Add -11 to \sqrt{7441}.
y=\frac{-\sqrt{7441}-11}{244}
Now solve the equation y=\frac{-11±\sqrt{7441}}{244} when ± is minus. Subtract \sqrt{7441} from -11.
122y^{2}+11y-15=122\left(y-\frac{\sqrt{7441}-11}{244}\right)\left(y-\frac{-\sqrt{7441}-11}{244}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{7441}}{244} for x_{1} and \frac{-11-\sqrt{7441}}{244} for x_{2}.