Evaluate
\frac{1216}{761}\approx 1.597897503
Factor
\frac{2 ^ {6} \cdot 19}{761} = 1\frac{455}{761} = 1.597897503285151
Share
Copied to clipboard
\begin{array}{l}\phantom{761)}\phantom{1}\\761\overline{)1216}\\\end{array}
Use the 1^{st} digit 1 from dividend 1216
\begin{array}{l}\phantom{761)}0\phantom{2}\\761\overline{)1216}\\\end{array}
Since 1 is less than 761, use the next digit 2 from dividend 1216 and add 0 to the quotient
\begin{array}{l}\phantom{761)}0\phantom{3}\\761\overline{)1216}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1216
\begin{array}{l}\phantom{761)}00\phantom{4}\\761\overline{)1216}\\\end{array}
Since 12 is less than 761, use the next digit 1 from dividend 1216 and add 0 to the quotient
\begin{array}{l}\phantom{761)}00\phantom{5}\\761\overline{)1216}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1216
\begin{array}{l}\phantom{761)}000\phantom{6}\\761\overline{)1216}\\\end{array}
Since 121 is less than 761, use the next digit 6 from dividend 1216 and add 0 to the quotient
\begin{array}{l}\phantom{761)}000\phantom{7}\\761\overline{)1216}\\\end{array}
Use the 4^{th} digit 6 from dividend 1216
\begin{array}{l}\phantom{761)}0001\phantom{8}\\761\overline{)1216}\\\phantom{761)}\underline{\phantom{9}761\phantom{}}\\\phantom{761)9}455\\\end{array}
Find closest multiple of 761 to 1216. We see that 1 \times 761 = 761 is the nearest. Now subtract 761 from 1216 to get reminder 455. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }455
Since 455 is less than 761, stop the division. The reminder is 455. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}