Solve for m
m=\frac{6}{11}\approx 0.545454545
m=-\frac{6}{11}\approx -0.545454545
Share
Copied to clipboard
121m^{2}-99+63=0
Add 63 to both sides.
121m^{2}-36=0
Add -99 and 63 to get -36.
\left(11m-6\right)\left(11m+6\right)=0
Consider 121m^{2}-36. Rewrite 121m^{2}-36 as \left(11m\right)^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=\frac{6}{11} m=-\frac{6}{11}
To find equation solutions, solve 11m-6=0 and 11m+6=0.
121m^{2}=-63+99
Add 99 to both sides.
121m^{2}=36
Add -63 and 99 to get 36.
m^{2}=\frac{36}{121}
Divide both sides by 121.
m=\frac{6}{11} m=-\frac{6}{11}
Take the square root of both sides of the equation.
121m^{2}-99+63=0
Add 63 to both sides.
121m^{2}-36=0
Add -99 and 63 to get -36.
m=\frac{0±\sqrt{0^{2}-4\times 121\left(-36\right)}}{2\times 121}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 121 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 121\left(-36\right)}}{2\times 121}
Square 0.
m=\frac{0±\sqrt{-484\left(-36\right)}}{2\times 121}
Multiply -4 times 121.
m=\frac{0±\sqrt{17424}}{2\times 121}
Multiply -484 times -36.
m=\frac{0±132}{2\times 121}
Take the square root of 17424.
m=\frac{0±132}{242}
Multiply 2 times 121.
m=\frac{6}{11}
Now solve the equation m=\frac{0±132}{242} when ± is plus. Reduce the fraction \frac{132}{242} to lowest terms by extracting and canceling out 22.
m=-\frac{6}{11}
Now solve the equation m=\frac{0±132}{242} when ± is minus. Reduce the fraction \frac{-132}{242} to lowest terms by extracting and canceling out 22.
m=\frac{6}{11} m=-\frac{6}{11}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}