Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

120\left(x^{2}+15x\right)
Factor out 120.
x\left(x+15\right)
Consider x^{2}+15x. Factor out x.
120x\left(x+15\right)
Rewrite the complete factored expression.
120x^{2}+1800x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1800±\sqrt{1800^{2}}}{2\times 120}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1800±1800}{2\times 120}
Take the square root of 1800^{2}.
x=\frac{-1800±1800}{240}
Multiply 2 times 120.
x=\frac{0}{240}
Now solve the equation x=\frac{-1800±1800}{240} when ± is plus. Add -1800 to 1800.
x=0
Divide 0 by 240.
x=-\frac{3600}{240}
Now solve the equation x=\frac{-1800±1800}{240} when ± is minus. Subtract 1800 from -1800.
x=-15
Divide -3600 by 240.
120x^{2}+1800x=120x\left(x-\left(-15\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -15 for x_{2}.
120x^{2}+1800x=120x\left(x+15\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.