Solve for t
t = \frac{\sqrt{1345} + 95}{32} \approx 4.114820051
t = \frac{95 - \sqrt{1345}}{32} \approx 1.822679949
Share
Copied to clipboard
-16t^{2}+95t=120
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+95t-120=0
Subtract 120 from both sides.
t=\frac{-95±\sqrt{95^{2}-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 95 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-95±\sqrt{9025-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
Square 95.
t=\frac{-95±\sqrt{9025+64\left(-120\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-95±\sqrt{9025-7680}}{2\left(-16\right)}
Multiply 64 times -120.
t=\frac{-95±\sqrt{1345}}{2\left(-16\right)}
Add 9025 to -7680.
t=\frac{-95±\sqrt{1345}}{-32}
Multiply 2 times -16.
t=\frac{\sqrt{1345}-95}{-32}
Now solve the equation t=\frac{-95±\sqrt{1345}}{-32} when ± is plus. Add -95 to \sqrt{1345}.
t=\frac{95-\sqrt{1345}}{32}
Divide -95+\sqrt{1345} by -32.
t=\frac{-\sqrt{1345}-95}{-32}
Now solve the equation t=\frac{-95±\sqrt{1345}}{-32} when ± is minus. Subtract \sqrt{1345} from -95.
t=\frac{\sqrt{1345}+95}{32}
Divide -95-\sqrt{1345} by -32.
t=\frac{95-\sqrt{1345}}{32} t=\frac{\sqrt{1345}+95}{32}
The equation is now solved.
-16t^{2}+95t=120
Swap sides so that all variable terms are on the left hand side.
\frac{-16t^{2}+95t}{-16}=\frac{120}{-16}
Divide both sides by -16.
t^{2}+\frac{95}{-16}t=\frac{120}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{95}{16}t=\frac{120}{-16}
Divide 95 by -16.
t^{2}-\frac{95}{16}t=-\frac{15}{2}
Reduce the fraction \frac{120}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{95}{16}t+\left(-\frac{95}{32}\right)^{2}=-\frac{15}{2}+\left(-\frac{95}{32}\right)^{2}
Divide -\frac{95}{16}, the coefficient of the x term, by 2 to get -\frac{95}{32}. Then add the square of -\frac{95}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{95}{16}t+\frac{9025}{1024}=-\frac{15}{2}+\frac{9025}{1024}
Square -\frac{95}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{95}{16}t+\frac{9025}{1024}=\frac{1345}{1024}
Add -\frac{15}{2} to \frac{9025}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{95}{32}\right)^{2}=\frac{1345}{1024}
Factor t^{2}-\frac{95}{16}t+\frac{9025}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{95}{32}\right)^{2}}=\sqrt{\frac{1345}{1024}}
Take the square root of both sides of the equation.
t-\frac{95}{32}=\frac{\sqrt{1345}}{32} t-\frac{95}{32}=-\frac{\sqrt{1345}}{32}
Simplify.
t=\frac{\sqrt{1345}+95}{32} t=\frac{95-\sqrt{1345}}{32}
Add \frac{95}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}