Solve for t
t=-\frac{5}{4}i=-1.25i
t=\frac{5}{4}i=1.25i
Share
Copied to clipboard
-16t^{2}+95=120
Swap sides so that all variable terms are on the left hand side.
-16t^{2}=120-95
Subtract 95 from both sides.
-16t^{2}=25
Subtract 95 from 120 to get 25.
t^{2}=-\frac{25}{16}
Divide both sides by -16.
t=\frac{5}{4}i t=-\frac{5}{4}i
The equation is now solved.
-16t^{2}+95=120
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+95-120=0
Subtract 120 from both sides.
-16t^{2}-25=0
Subtract 120 from 95 to get -25.
t=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
Square 0.
t=\frac{0±\sqrt{64\left(-25\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{0±\sqrt{-1600}}{2\left(-16\right)}
Multiply 64 times -25.
t=\frac{0±40i}{2\left(-16\right)}
Take the square root of -1600.
t=\frac{0±40i}{-32}
Multiply 2 times -16.
t=-\frac{5}{4}i
Now solve the equation t=\frac{0±40i}{-32} when ± is plus.
t=\frac{5}{4}i
Now solve the equation t=\frac{0±40i}{-32} when ± is minus.
t=-\frac{5}{4}i t=\frac{5}{4}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}