Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-16t^{2}+95=120
Swap sides so that all variable terms are on the left hand side.
-16t^{2}=120-95
Subtract 95 from both sides.
-16t^{2}=25
Subtract 95 from 120 to get 25.
t^{2}=-\frac{25}{16}
Divide both sides by -16.
t=\frac{5}{4}i t=-\frac{5}{4}i
The equation is now solved.
-16t^{2}+95=120
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+95-120=0
Subtract 120 from both sides.
-16t^{2}-25=0
Subtract 120 from 95 to get -25.
t=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
Square 0.
t=\frac{0±\sqrt{64\left(-25\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{0±\sqrt{-1600}}{2\left(-16\right)}
Multiply 64 times -25.
t=\frac{0±40i}{2\left(-16\right)}
Take the square root of -1600.
t=\frac{0±40i}{-32}
Multiply 2 times -16.
t=-\frac{5}{4}i
Now solve the equation t=\frac{0±40i}{-32} when ± is plus.
t=\frac{5}{4}i
Now solve the equation t=\frac{0±40i}{-32} when ± is minus.
t=-\frac{5}{4}i t=\frac{5}{4}i
The equation is now solved.