Evaluate
\frac{24}{7}\approx 3.428571429
Factor
\frac{2 ^ {3} \cdot 3}{7} = 3\frac{3}{7} = 3.4285714285714284
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)120}\\\end{array}
Use the 1^{st} digit 1 from dividend 120
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)120}\\\end{array}
Since 1 is less than 35, use the next digit 2 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)120}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)120}\\\end{array}
Since 12 is less than 35, use the next digit 0 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)120}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120
\begin{array}{l}\phantom{35)}003\phantom{6}\\35\overline{)120}\\\phantom{35)}\underline{\phantom{}105\phantom{}}\\\phantom{35)9}15\\\end{array}
Find closest multiple of 35 to 120. We see that 3 \times 35 = 105 is the nearest. Now subtract 105 from 120 to get reminder 15. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }15
Since 15 is less than 35, stop the division. The reminder is 15. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}