Solve for x
x = \frac{10 \sqrt{47307}}{1213} \approx 1.793089234
x = -\frac{10 \sqrt{47307}}{1213} \approx -1.793089234
Graph
Share
Copied to clipboard
12.13x^{2}=39
Add 39 to both sides. Anything plus zero gives itself.
x^{2}=\frac{39}{12.13}
Divide both sides by 12.13.
x^{2}=\frac{3900}{1213}
Expand \frac{39}{12.13} by multiplying both numerator and the denominator by 100.
x=\frac{10\sqrt{47307}}{1213} x=-\frac{10\sqrt{47307}}{1213}
Take the square root of both sides of the equation.
12.13x^{2}-39=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 12.13\left(-39\right)}}{2\times 12.13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12.13 for a, 0 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12.13\left(-39\right)}}{2\times 12.13}
Square 0.
x=\frac{0±\sqrt{-48.52\left(-39\right)}}{2\times 12.13}
Multiply -4 times 12.13.
x=\frac{0±\sqrt{1892.28}}{2\times 12.13}
Multiply -48.52 times -39.
x=\frac{0±\frac{\sqrt{47307}}{5}}{2\times 12.13}
Take the square root of 1892.28.
x=\frac{0±\frac{\sqrt{47307}}{5}}{24.26}
Multiply 2 times 12.13.
x=\frac{10\sqrt{47307}}{1213}
Now solve the equation x=\frac{0±\frac{\sqrt{47307}}{5}}{24.26} when ± is plus.
x=-\frac{10\sqrt{47307}}{1213}
Now solve the equation x=\frac{0±\frac{\sqrt{47307}}{5}}{24.26} when ± is minus.
x=\frac{10\sqrt{47307}}{1213} x=-\frac{10\sqrt{47307}}{1213}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}