Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

12z^{2}=245
Add 245 to both sides. Anything plus zero gives itself.
z^{2}=\frac{245}{12}
Divide both sides by 12.
z=\frac{7\sqrt{15}}{6} z=-\frac{7\sqrt{15}}{6}
Take the square root of both sides of the equation.
12z^{2}-245=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 12\left(-245\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -245 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 12\left(-245\right)}}{2\times 12}
Square 0.
z=\frac{0±\sqrt{-48\left(-245\right)}}{2\times 12}
Multiply -4 times 12.
z=\frac{0±\sqrt{11760}}{2\times 12}
Multiply -48 times -245.
z=\frac{0±28\sqrt{15}}{2\times 12}
Take the square root of 11760.
z=\frac{0±28\sqrt{15}}{24}
Multiply 2 times 12.
z=\frac{7\sqrt{15}}{6}
Now solve the equation z=\frac{0±28\sqrt{15}}{24} when ± is plus.
z=-\frac{7\sqrt{15}}{6}
Now solve the equation z=\frac{0±28\sqrt{15}}{24} when ± is minus.
z=\frac{7\sqrt{15}}{6} z=-\frac{7\sqrt{15}}{6}
The equation is now solved.