Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12\left(y^{2}+8y\right)
Factor out 12.
y\left(y+8\right)
Consider y^{2}+8y. Factor out y.
12y\left(y+8\right)
Rewrite the complete factored expression.
12y^{2}+96y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-96±\sqrt{96^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-96±96}{2\times 12}
Take the square root of 96^{2}.
y=\frac{-96±96}{24}
Multiply 2 times 12.
y=\frac{0}{24}
Now solve the equation y=\frac{-96±96}{24} when ± is plus. Add -96 to 96.
y=0
Divide 0 by 24.
y=-\frac{192}{24}
Now solve the equation y=\frac{-96±96}{24} when ± is minus. Subtract 96 from -96.
y=-8
Divide -192 by 24.
12y^{2}+96y=12y\left(y-\left(-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -8 for x_{2}.
12y^{2}+96y=12y\left(y+8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.