Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x-3\left(x-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)=4\left(x-1\right)
Use the distributive property to multiply -\frac{1}{2} by x-1.
12x-3\left(x-\frac{1}{2}x+\frac{1}{2}\right)=4\left(x-1\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
12x-3\left(\frac{1}{2}x+\frac{1}{2}\right)=4\left(x-1\right)
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
12x-3\times \frac{1}{2}x-3\times \frac{1}{2}=4\left(x-1\right)
Use the distributive property to multiply -3 by \frac{1}{2}x+\frac{1}{2}.
12x+\frac{-3}{2}x-3\times \frac{1}{2}=4\left(x-1\right)
Multiply -3 and \frac{1}{2} to get \frac{-3}{2}.
12x-\frac{3}{2}x-3\times \frac{1}{2}=4\left(x-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
12x-\frac{3}{2}x+\frac{-3}{2}=4\left(x-1\right)
Multiply -3 and \frac{1}{2} to get \frac{-3}{2}.
12x-\frac{3}{2}x-\frac{3}{2}=4\left(x-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{21}{2}x-\frac{3}{2}=4\left(x-1\right)
Combine 12x and -\frac{3}{2}x to get \frac{21}{2}x.
\frac{21}{2}x-\frac{3}{2}=4x-4
Use the distributive property to multiply 4 by x-1.
\frac{21}{2}x-\frac{3}{2}-4x=-4
Subtract 4x from both sides.
\frac{13}{2}x-\frac{3}{2}=-4
Combine \frac{21}{2}x and -4x to get \frac{13}{2}x.
\frac{13}{2}x=-4+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{13}{2}x=-\frac{8}{2}+\frac{3}{2}
Convert -4 to fraction -\frac{8}{2}.
\frac{13}{2}x=\frac{-8+3}{2}
Since -\frac{8}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{13}{2}x=-\frac{5}{2}
Add -8 and 3 to get -5.
x=-\frac{5}{2}\times \frac{2}{13}
Multiply both sides by \frac{2}{13}, the reciprocal of \frac{13}{2}.
x=\frac{-5\times 2}{2\times 13}
Multiply -\frac{5}{2} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-5}{13}
Cancel out 2 in both numerator and denominator.
x=-\frac{5}{13}
Fraction \frac{-5}{13} can be rewritten as -\frac{5}{13} by extracting the negative sign.